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Goals of the work

• To determine necessary and sufficient conditions for the
compatibility of a number of marginal models with some joint.

• To extend the result based on the running intersection
property to the conditional case.

• To get a more efficient manner to compute the natural
extension.
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Disjoint assessments

A simple scenario is when we have disjoint sets of variables: if we
are given marginal probability measures P1,P2,P3 on X1,X2,X3,
then we can find a joint P on X1 ×X2 ×X3 simply by applying
independence: we make

P := P1 × P2 × P3.

In the finite case, we just make the product of the mass functions.
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What if they are not disjoint?
If we consider assessments P12 on X1 ×X2 and P23 on X2 ×X3,
then a necessary condition for the existence of a compatible joint is
that P12,P23 induce the same marginal on X2:

P12(A) = P23(A) ∀A ⊆ X2.

In fact, we could always define in the finite case

P(x1, x2, x3) = P12(x1, x2) · P23(x3|x2),

where P23(x3|x2) is derived from P23 using Bayes’ rule.

↪→ So is this enough?
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Pairwise compatibility ; global compatibility
Actually it is not: consider X1 = X2 = X3 = {0, 1} and the
marginals P12,P13,P23 given by:

P12(0, 0) = P12(1, 1) = 0.5, P12(0, 1) = P12(1, 0) = 0

P13(0, 0) = P12(1, 1) = 0.5, P12(0, 1) = P12(1, 0) = 0

P23(0, 0) = P12(1, 1) = 0, P12(0, 1) = P12(1, 0) = 0.5

They are pairwise compatible (all of them have uniform marginals),
but not globally compatible: P12 implies X1 = X2, P13 implies
X1 = X3 and P23 implies X2 6= X3, and these three things are
incompatible!
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Running intersection property (Beeri et al.)
The key is in the running intersection property (RIP): we say that
indices S1, . . . ,Sr satisfy RIP when

Si ∩ (∪j<iSj) ⊆ Sj∗ for some j∗ < i .

Then if we have marginals PS1 , . . . ,PSr on XS1 , . . . ,XSr ,

PS1 , . . . ,PSr globally compatible⇔

{
PS1 , . . . ,PSr pairwise compatible

S1, . . . ,Sr satisfy RIP.
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Why the hell??

The key here is that the RIP condition allows us to establish an
order in the marginals we are given, and then we can apply the law
of total probability by adding some assumptions of independence
between sets of variables.
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First generalisation

Now we are going to try to generalise the result in a number of
ways:

I When the possibility spaces are infinite.

I When the marginals are imprecise.

I When we have conditional information.
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Sets of desirable gambles

A gamble on X is a bounded real-valued function f : X → R. We
denote the set of all gambles on X by L(X ), and let
L+ := {f 
 0}, the set of positive gambles.

Given X1, . . . ,Xn and S ⊆ {1, . . . , n}, we let XS := ×j∈SXj .

A gamble f on X n is S-measurable if f (x) = f (y) for every
x , y ∈ X n such that πS(x) = πS(y), and we denote by KS the set
of XS -measurable gambles.

There exists a one-to-one correspondence between L(XS) and KS .
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Coherent sets of gambles

D ⊆ L(X ) is coherent when 0 /∈ D and D = posi(D ∪ L+), where
posi denotes the set of positive linear combinations.

In particular, we say that a set D ⊆ KS is coherent relative to KS

when the set D′ ⊆ L(XS) that we can make a one-to-one
correspondence with, is coherent.

D avoids partial loss when it is included in some coherent set of
gambles. The smallest such set is called its natural extension, and
it is E = posi(L+ ∪ D).
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Compatibility for sets of desirable gambles

Consider subsets S1, . . . ,Sr of {1, . . . , n}, and let Dj ⊆ L(X n) be
coherent with respect to KSj := Kj .

Given i 6= j in {1, . . . , r}, we say that Di ,Dj are pairwise
compatible if and only if

Di ∩ Kj = Dj ∩ Ki .

I If S1, . . . ,Sr satisfy RIP and D1, . . . ,Dr are pairwise
compatible, then there exists a coherent set of desirable
gambles D ⊆ L(X n) that is globally compatible with
D1, . . . ,Dr , in the sense that D ∩Kj = Dj ∀j = 1, . . . , r .
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Coherent lower previsions

A lower prevision on is L(X ) a functional P : L(X )→ R. P is
called coherent when for any f , g ∈ L and any λ > 0:

(C1) P(f ) ≥ infx∈X f (x);

(C2) P(λf ) = λP(f );

(C3) P(f + g) ≥ P(f ) + P(g).

When K = L(X ) and (C3) holds with equality for every
f , g ∈ L(X ), P is called a linear prevision and is denoted by P.

A coherent set of desirable gambles D induces a coherent lower
prevision P on L(X ) by means of the formula

P(f ) = sup{µ : f − µ ∈ D}.
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Corollary: compatibility for coherent lower previsions

Consider subsets S1, . . . ,Sr of {1, . . . , r} satisfying RIP and for
every j let P j be a coherent lower prevision on XSj .

I There exists a coherent lower prevision P on X n such that
P(f ) = P j(f ) ∀f ∈ Kj ,∀j ⇐⇒ P i (f ) = P j(f ) ∀f ∈ Ki ∩ Kj ,
and for every i 6= j ∈ {1, . . . , r}.

...so in particular we obtain the classical result.
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Conditional information

More generally, we may have unconditional and conditional
information.

However, the meaning of compatibility is not as clear as in our
previous results, in the sense that such a joint may necessarily
induce additional assessments that are not in the original ones.

Taking this into account, given D1, . . . ,Dr , we shall investigate to
which extent these sets avoid partial loss, meaning that they have
a joint coherent superset; but we are not requiring anymore that
D ∩Kj = Dj for every j = 1, . . . , r .
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First simplification: remove isolated variables

I For every i = 1, . . . , r , let D∗i be the restriction of Di to
KSi∩(∪j 6=iSj ).

∪ri=1Di avoids partial loss ⇐⇒ ∪ri=1D∗i avoids partial loss.

We may try to simplify further to pairwise compatibility:

∪ri=1Di avoid partial loss ⇒ ∪i 6=jDj
i avoid partial loss,

where Dj
i is the restriction of Di to KSi∩Sj .

E. Miranda c©2018 Compatibility, coherence and RIP
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Just look at pairwise intersections?

....but it will not work:

∪i 6=jDj
i avoid partial loss ; ∪ri=1Di avoid partial loss.
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Second simplification: coherence graphs
It was proven by Miranda and Zaffalon (2009) that the verification
of coherence can be simplfied by means of coherence graphs:
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Figure: Example of a coherence graph.

The assessments in different superblocks are automatically
coherent, so can focus on each superblock separately.

E. Miranda c©2018 Compatibility, coherence and RIP



Introduction
Unconditional case

Conditional case
Conclusions

Join trees

Assume we have conditional information on sets of variables
O1|I1, . . . ,Or |Ir . We make a graphical representation of these
templates so that we put the variables Oj ∪ Ij in one node, for
j = 1, . . . , r , and connect two nodes when their associated sets of
variables have non-empty intersection.

From this graphical representation, and after triangulation, it is
always possible to make a tree of cliques called join tree, so that
the sets of variables present in the different cliques satisfy RIP: for
any two nodes V,W, all the nodes in the path between V and W
contain V ∩W .
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Example

(a) A join tree. (b) Not a join tree.
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Our setting

We assume that:

I On each of the cliques of the join tree we have a coherent set
of desirable gambles Dj on the corresponding set of variables.

I Dj is coherent relative to the set Kj of XSj -measurable
gambles.

I The sets are pairwise compatible.

Since the join tree satisfies RIP, the previous result guarantees that
there is a compatible joint; the smallest one is the natural
extension E . We look for an efficient manner of computing it.

E. Miranda c©2018 Compatibility, coherence and RIP



Introduction
Unconditional case

Conditional case
Conclusions

Iterative procedure

I We pick any node as a root. There is a partition of its set of
nodes {1, . . . , r} into sets A0,A1, . . . ,Ak , k < r , where Ai

includes those nodes that are at a distance i from the root.
Thus, A0 includes only the root.

I Step 1. We consider the nodes in Ak . For each of them, we
take its associated set of desirable gambles.

I Step 2. We consider the nodes in Ak−1. For each node j of
them, we have two possibilities:

I If it has no adjacent nodes in Ak , we define D′
j as its set Dj of

desirable gambles.
I Otherwise, we take the set A of adjacent nodes, and define D′

j

as the natural extension of Dj ∪
⋃

l∈AD′
l|Sj∩Sl

.

I We proceed iteratively until we end up with a set of desirable
gambles D′0 on the root node.

E. Miranda c©2018 Compatibility, coherence and RIP
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Main result, part 1

I D′0 is the restriction of the natural extension E of D1, . . . ,Dr

to KS0 .

I D1, . . . ,Dr avoid partial loss if and only if D′0 is coherent.

Ok, but do we need to repeat this for each node so as to get the
natural extension everywhere?

E. Miranda c©2018 Compatibility, coherence and RIP
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Reverse procedure

With the same root node as before and the sets D′0, . . . ,D′r−1 we
generated above, we define iteratively D′′0 , . . . ,D′′r−1 as follows:

I We make D′′0 := D′0.

I Step 1: if a node i belongs to A1, we define
D′′i := posi(D′i ∪ D′0|Si∩S0 ∪ L

+(XSi )).

I Step 2: for any i ∈ A2, we let Bi denote its neighbours in A1,
and let D′′i := posi(D′i ∪

⋃
j∈Bi
D′′j |Sj∩Si ∪ L

+(XSi )).

We proceed iteratively until we get to the nodes in Ak .

E. Miranda c©2018 Compatibility, coherence and RIP
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Main result, part 2

Let E be the natural extension of D1, . . . ,Dr . If we follow the
procedure above, then D′′i = E ∩ Ki∀i = 1, . . . , r .
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Conclusions

I In the unconditional case, RIP is a device that allows to apply
the law of total probability.

I Because of that, we can use its extension to the imprecise
case: the marginal extension theorem.

I In the conditional case, we can simplify the verification of
coherence using join trees and coherence graphs.

Open problems:

I Infinite spaces: conglomerability?

I Clarify the process inside the cliques.

I Results in terms of conditional lower previsions?
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