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The General Problem

Dynamical system with state x; € X, t > 0

o For simple orbital mechanics: X ~ [0, 1]°

General statement given by (stochastic) differential equation

d W
dt

system dynamics . v . . diffusion coefficient
Brownian motion noise

dx _ Flxe t]0) +
—_———

_ % o(x,t])
dt —_——

with stochastic initial condition xp ~ P(Xp | 6).
Collect all parameters in 6

For given 6 induces a stochastic process {X¢|0}+>0

e This process is a Markov chain
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The General Problem

Realisations of {X¢|0}+>0 cannot be observed directly
e l.e. it is a hidden Markov chain

But, noisy measurement model.
Yt ~ Ip( |Xta 0)

(Just writing 6 for the parameters again)

Filtering Problem

Given collection yt,. . = ¥4, ..., Yt,,» compute conditional
probability
Pa(Xt | ytl:n)

More generally: conditional expectation of function h: X — R:

Eq [h(Xt) | Ytl:,,}
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Imprecise Filtering

What if we don’t know 6 exactly?

If we can assume it belongs to a set ¥:
e Induces an imprecise stochastic process
e l.e. a set of stochastic processes

Imprecise Filtering Problem
Compute lower- and upper expectation

E[h(X:) | ver,| = jnf Eo[h(Xe) | y2.,]
E[h(Xe) | y2.,] = sup g [h(Xe) | yer)

= provide robust bounds on quantity of interest
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Some Immediate Difficulties

Even for fixed 6, no analytical solution for {X¢|0}+>0
o Let alone for Eg[h(X;) | ye.,]

Convergence of numerical approaches?
e Uniformly w.r.t 97

The optimisation to compute E or E is difficult
e Multi-modal objective surface, ...

Semantic issues in problem statement
e Physical interpretation of certain relaxations,. ..
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Some Existing Approaches

Precise case:
» Kalman Filter (/variants)

o Gaussian distr., linear dyn. = P(X;|y:,,) is Gaussian
o Extended Kalman Filter: Just re-linearise over time

e Particle Filters
e Essentially a Monte Carlo method

Imprecise case:

e Special cases: propagation of p-boxes, set-valued
observations, ...
o “Imprecise Kalman Filter” [1]

e Provides general solution. ..
e ...but so far only solved in specific cases

e E.g. Linear Gaussian-Vacuous Mixture

[1] A. Benavoli, M. Zaffalon, E. Miranda: Robust filtering through coherent lower previsions,
IEEE Transactions on Automatic Control, 2011
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The Formal Setup

Basically we just need to apply Bayes' rule:

E [h(Xt) H,"7=1 "/}(yti | Xt;)]

E[h(Xt) |yt1:n] = ]E[Hlf’:l P(yy |Xti)]

In the imprecise case (let's say E[[]7_; ]I{yti}(Yt,)} > 0):

E[h(Xe) |y, = 1 E | (h(Xe) — H]I{yt (Yo)| =

So, we need to compute a joint expectation.
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lterated (Lower) Expectation
Write g(th:n’ Xt’ Ytl:n) = (h(Xt) - lu’) H7=1 ]I{}/tl-}(yti)
Use epistemic irrelevance = “imprecise Markov property”

Recursively decompose the joint:

E[g(-)] =E[E[g() | Xo]]
=E[E[E[g()| X0, Xa] | Xo]]

=E[g()[ Xy |

=IE[]E[]E[IE[' [[g()|xt,vtn]|xtn] | Yo, X ] | Xa] | Xo]]

l\|l.ﬁl|x||
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lterated (Lower) Expectation

Now resolve the remaining conditionals “inward-outward”:

EEEE[E[E[g()| X, Ye] [Xe] -+ | Yo, Xa] [ Xe] [ Xo]]

/

TV
start here

Fix all variables except X;:

E [(h(xt) — ) TT=1 Iy, (0) | Xew = Xty Yo = ’Ytn]
E [(h(Xt) - M) ‘th = Xt Y, = ’)Ifn] H?:l ]I_Vt,- (f)/ti)
E [(h(Xe) = 1) | Xe, = xt,) TTi=1 Iy, (71:)
4

()
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lterated (Lower) Expectation

We have a new function g’ that no longer depends on X;.
After substitution

EEE[E[--E[g'()]Xe,] -+~ | Yo, Xe] | Xur] | Xo]]
this part next

Fix all variables except Y%,

Elg'(:) [ Xe, = xt,)
= E[E [(h(X) = 1) X, = xt,] Ly, (Ye,) TS Ly, ()

= H,"_ Hyt (7e; )E[( (Xe) — M) | Xt, = th}

E[L,, (Ye )| Xe, = xt,]  if E[(h(Xe) — 1) [ Xe, = xt,] >0
E[H}’tn(ytn)’th = th] otherwise

:g"()
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lterated (Lower) Expectation

We have

EE[E[E[---g"(-)- - | Y, Xt ] [ Xer] | Xo] ]
g”(+) depends on Xy, ..., Xz, _,, Xi, and Yy, ..., Xs,_,
= This is what we started with, but reduced

Now just recurse

EEEE[g"() | Yo Xe] | Xu] | Xo]]

v

=g ()

=E[g*(X0)]
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Remaining Problem, in Summary

Lower- and upper likelihoods of states given measurements:
o E[L,,(Y:)[Xe = xe] and E[T,,(Ye)| X = x]

For arbitrary h: X — R, need to evaluate

« E[h(X0)] (okay)
« E[h(X,,) | X,, ,] (not okay)
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Some Simplifying Assumptions

Assume dynamics are precise and time-homogeneous:

dXt_ th
E—f(xt)-l— dt XO’(Xt)

Let X ~[0,1]¢ and h; : x = E[h(X;) | Xo = x]. Then

d d d
dht(X) _ - 8ht(X) 1 T "82 ht(X)
fe = A0 33 Y e e
with hy = h.
To get ht(x) = E[h(X:) | Xo = x] we need to solve this PDE.

In general no analytical solution.
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Some Further Simplifying Assumptions

Assume the dynamics are also deterministic
e l.e. the process is degenerate and described by f(x;)

* We keep stochastic (and imprecise) initial distribution and

measurements
We get
2": 8 he(x
— (9x,
with hg = h.

Still need to solve a PDE, and still no analytical solution

We're going to approximate this
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Approximate Solution

Easy enough to solve pointwise: for any xg € X,
E[h(X:) | Xo = xo] = h(xt)

with .
Xt = X0 —l—/ f(x;)dr
0

= Just do this for a lot of different xg

Then extend pointwise estimates to entire domain X
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Dynamics Propagation

Collection of starting points Z = z1,...,2znm

Compute Z* = zl(t), ces ,z,(,,t), with

t
z.(t)zzi—|—/ f(Zi(T))dT, i:]-a"'7m
0

This is just an ODE = use your favourite numerical integrator

e l.e. Explicit/implicit Euler, Runge-Kutta schemes,. ..

Note: this could be “embarrassingly parallelized”

e A modern GPU can solve hundreds to thousands in parallel
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Propagated Dynamics

We now know
he(zi) = h(x\") = B[a(X:) | Xo = z] fori=1,....m

Now extend this to IAvt on entire X
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Radial Basis Function Interpolation

Training points Z =z, ...,z € X.
Radial basis functions ¢ : X x X = R, ¢(z,c) = ¢(||z — ¢||)

Basis expansion ¢, € R™ of any z € A’:

¢, = [¢(z, Zl) o ¢(Zv zm)]T

Can find wy, € R™ to approximate any ( “nice”) function
h: X =R

m

h(z) ~ h(z) = wip(z,z) = ] wy

i=1

Uncertain
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(@ Af

N. Flyer, G.B. Wright: A radial basis function method for the shallow water equations on a sphere,
Proceedings Royal Soc A, 2009
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Radial Basis Function Interpolation

Construct design(/kernel /feature/...) matrix

(Dzl ¢(217 Zl) Tt ¢(zl7 Zm)
¢zm ¢(Zma Z]_) e ¢(Zm’ Zm)

Then @7 is usually invertible if all zy, ..., z, are unique.
Let h(Z) = [A(z1) - - - h(zm)] "
Find wy, that interpolates h on Z:

dzwy, = h(Z)

In other words, we get wy = ®;1h(Z)
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Radial Basis Function Interpolation

Pros:
o Straightforward (conceptually and to implement)

o Meshless (i.e. arbitrary Z), so no need to partition X’
e Just solve a linear system

e Well-developed theory

e Good performance for approximating PDE solutions
o Near spectral (exponential) convergence

e Many parameters to fine tune performance
o Basis functions, hyperparameters, regularisation, ...

Cons:
e Many parameters to fine tune

o Numerical instability (system is typically ill-conditioned)
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Approximation in Summary

We want to compute he(Xo) &~ h:(Xo) := E[h(X:) | Xo]

We know that h:(xo) = h(x¢), where

t
Xt = X0 —i—/ f(x;)dr
0

We proceed as follows
@ Choose some Z
® Compute Z* for time t
® Compute design matrix ®z
@ Compute wp, = &, h(Z*)
O Let hy(x) := & wy, for any x € X
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lterated Expectation, Again

E[h(X;,)] = E[E[A(X:,)| Xo] ]
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lterated Expectation, Again

E[h(X:,)] = E[E[E[- - E[A(Xe,) [ Xe,_,] - [ Xe, ]| Xo]]
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lterated Expectation, Again

E[h(X:,)] = E[E[E[- - E[A(Xe,) [ Xe,_,] - [ Xe, ]| Xo]]

htn:h
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lterated Expectation, Again

E[h(X:,)] = E[E[E[- - E[A(Xe,) [ Xe,_,] - [ Xe, ]| Xo]]

htn:h




lterated Expectation, Again

E[h(X:,)] = E[E[E[- - E[A(Xe,) [ Xe,_,] - [ Xe, ]| Xo]]

htn :h
Y4 A
\_/
f()
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lterated Expectation, Again

E[h(X:,)] = E[E[E[- - E[A(Xe,) [ Xe,_,] - [ Xe, ]| Xo]]

wp, = &5 h, (Z7)
T
htn =h
V4 y
\_/




lterated Expectation, Again

E[h(X:,)] = E[E[E[- - E[A(Xe,) [ Xe,_,] - [ Xe, ]| Xo]]

wp, = &5 h, (Z7)
RS
Btn—l htn ::h
z z*
\_/
f(-)
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lterated Expectation, Again

E[h(X;,)] # E[E[E[-- Ay, (Xe,,) -+ 1Xe ] [ Xo]]
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lterated Expectation, Again

E[h(X;,)] # E[E[E[-- Ay, (Xe,,) -+ 1Xe ] [ Xo]]
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lterated Expectation, Again

E[h(X;,)] # E[E[E[-- Ay, (Xe,,) -+ 1Xe ] [ Xo]]




lterated Expectation, Again

E[h(Xe,)] & E[E [hy, (X4 X0]]
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lterated Expectation, Again

E[h(Xe,)] & E[E [hy, (X4 X0]]

f(-)
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lterated Expectation, Again

E[h(X:,)] ~ E[ho(Xo)]




lterated Expectation, Again

E[h(X,)] ~ E[ho(X0)] = /X ho(x0) dP(Xo = o)
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The Crucial Part

How to make this tractable:
©® Make 0 =: ty, t1,...,t, a uniform partition of [0, t]
e Soti—ti_y=Aforali=1,...,n
® Choose the same Z at every step
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The Crucial Part

e Z* is the same at each step (by homogeneity)
e You can precompute Z, Z*, &z, ®z-, tbgl,
(dz-®;') =K
 Only once, offline, and O(Am) + O(m?)
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The Crucial Part

e Z* is the same at each step (by homogeneity)
e You can precompute Z, Z*, &z, ®z-, tbgl,
(dz-®;') =K
 Only once, offline, and O(Am) + O(m?)

e Remains to solve the recursion:

he,(x) = h(x)
he, 1 (x) = Ggwy =S 0, H(Z7) = o7, KON(ZY)
he, ,(x) = Olw, =0 07 0z 07 (Z7) = &[0 K H(Z")

he, ,(x) = O] ®;'KN(ZF) for£=1,....n

After precomputing, can find hg for any h in O(nm?)
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But does it work?
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Dynamics of a Spacecraft

https://www.vectorstock.com/royalty-free-vectors /vectors-by_mirquurius
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Dynamics of a Spaeeeratt Pendulum

https://www.vectorstock.com/royalty-free-vectors /vectors-by_mirquurius
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Pendulum Setup

Pendulum dynamics model:
W = e o) = Lopane - o
dt  dt |a: g/esin ay — pivg
With £ =1,g ~ —9.8 and p € {0,0.5}.
Known true initial position xo = [7/2 0]

Sequential reinitialisation with best guess after 1 second
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No Friction, Known Start, No Measurements
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With Friction, Known Start, No Measurements
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Pendulum Setup, With Measurements

Model thinks friction term p =0

Measurement model:
Y, ~ N (- | sinay, 0.322)

Unknown initial position with uniform
P(Xp) = U(—2,2) x U(-5,5)

Sequential reinitialisation with same uniform after 1 second
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No Friction, Uniform Start, 20 Measurements/s
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Friction, Uniform Start, 20 Measurements/s
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Pendulum Setup, Imprecise

Imprecise measurement model with lower- and upper likelihood:

Y(ye | xe) = 0.5N (ye | £sin o, 0.32°)
D(ye | xe) = 15N (ye | £sin e, 0.327)

Unknown initial position with vacuous on [—2,2] x [-5, 5]

Sequential reinitialisation with same vacuous after 1 second
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Vacuous Start, 20 Measurements/s,
Imprecise Measurement Models




Open Questions

Does this scale??
Numerical stability issues?

¢ Preconditioning
o Smart selection/pruning of training points?
e E.g. regularisation, LASSO

Generalisation to stochastic (and/or imprecise) dynamics?

Find informative “sequential prior”?
Interpretation of K = tbz*cpgl?
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