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Motivation

• Risk factors representation and uncertainty
quantification is complicated in large infrastructure
projects.

• Multidisciplinary nature needs a standard tool to
facilitate risk communication.

• Risk management must take into consideration the
uncertainty factors in the system.
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Motivation

• Probabilistic graphical models (like Bayes nets),
effective mathematical tool for uncertainty
quantification and system modelling.

• Allows to capture variable dependencies of complex
systems.

• Inference computation is a key method to update
outcomes in Bayesian networks.

• Reliable method of inference computation in Credal
networks is necessary.

H.D. Estrada-Lugo 

[*]S. Tolo, E. Patelli, and M. Beer, “Robust vulnerability analysis of nuclear facilities subject to external hazards,” Stoch. Environ. Res. Risk Assess., vol. 31, no. 10, pp. 2733-- 2756, 
2017.

Enhanced Bayesian Network[*].
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Bayesian Networks

• The Joint Probability Distribution (JPD) describes
entirely network’s dependability,

• By introducing evidence, infer updated outcomes.

• Intuitive and relatively easy to implement.

A Bayesian network is a probabilistic graphical model to study and analyse the
dependencies of components (random variables) that make up a system.
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Enhanced Bayesian Networks

• Calculation of conditional probabilities
consist in the approximation of the
failure probability.

𝑷 𝐶|𝐵 = න
Ω𝐶,𝑏
𝑐
𝒇 𝐴 𝑑𝐴

f(A): Probability Density Function of continuous node A. Ω𝐶,𝑏
𝑐 is the

domain when C=c in the space of C given B=b.

Bayesian Networks enhanced* with Structural Reliability Methods (SRM) permit to
calculate the conditional probability values of discrete children that come from
continuous-parent nodes.
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𝒇 𝐴

[*] D. Straub and A. Der Kiureghian, “Bayesian Network Enhanced with Structural Reliability Methods: Methodology,” J. 
Eng. Mech., vol. 136, no. 10, pp. 1248--1258, Oct. 2010.
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Imprecise data sets (discrete): 
Credal Networks

• Imprecision is represented through the so called credal
sets 𝐾 𝑥𝑖 .

• CNs inherent all the probabilistic and graphical
characteristics of BNs.

• A CN is a set of BNs, each with different probability values.

Generalization of BN to implement imprecise discrete variables in the form of intervals.
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Different extreme points combinations 
make a set of BNs that makes up a CN.
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Imprecise datasets (continuous):
Probability boxes

• When using SRM failure probability is now 

represented as:

𝑃𝑓 = max
𝜃

න

𝑔 𝑥 <0

𝑝(𝑥, 𝜃)𝑑𝑥

• In this way, the continuous probability distributions 

affected by aleatoric and epistemic uncertainty are 

taken into account.

A characterization of an uncertain continuous measure in the cumulative distribution
space.
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• It takes advantage of Object-Oriented programming in Matlab.

• Parallelization of high demanding tasks.

• Easy connectable with 3rd party toolboxes.

• Excellent platform for EBN.

www.cossan.co.uk

Computational toolbox
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Enhanced BN to Credal nets
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Enhanced Bayesian network [*] (Advanced BN) 

•Rectangle-Discrete

•Ellipse-Interval

•Circle-Continuous

•Trapezoid- P-box
[*] Silvia Tolo, Tutorial Enhanced Bayesian networks. OpenCossan Tutorial.

•Rectangle-Interval

Credal network[*] Enhanced Bayesian network[*] 

Reduction 

process
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Bayesian updating (Inference)
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Computation of posterior distribution, P(A|B), of a query node (A) given (or not) 
evidence (B).

Bayes’ Theorem

11



Bayesian updating (example)

H.D. Estrada-Lugo 

Computation of posterior distribution, P(A|B), of a query node (A) given (or not) 
evidence (B).

Traditional BN

JPD of the network N with binary variables :

P N = P A, B, C, D = P A P B P C A, B P(D|C)

What if we can to compute P(C1|D1)?

P 𝐶1|𝐷1 =
σ𝐴,𝐵𝑃(𝑁)

σ𝐴,𝐵,𝐶 𝑃(𝐷1)
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Bayesian updating (example)
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Traditional BN

Where:
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Bayesian updating (example)
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Traditional BN

Where:
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Exact inference
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Exact inference methods:

• Variable elimination (Marginalization). 
• Junction tree algorithm (Clique tree).
• Recursive conditioning.
• And/Or search.

This method is applicable to traditional and relatively
small BNs.

P(x)0 1

Posterior
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Inference with intervals
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Approximate inference.
• Inner and outer approximation.
• Linear programming approximation.
• Importance sampling.
• Stochastic MCMC simulation.
• Mini-bucket elimination.
• Generalized belief propagation.
• Variational methods.
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Inference with intervals
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It is based on the joint credal set definition to calculate the bounds of the marginal 
probability as:

This represents a non-linear optimization problem with a multilinear objective function. 
(The head ache of CN inference).
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Method 1: Naïve approach (Outer approximation)*

• Take the joint probability distribution function of upper bounds of all the variables in the 
net. Artificial JPDs are created (each containing a case of the query node).

• Outer approximation obtained by computing exact inference in 2 artificial JPDs.                   
1 containing the all-lower and another the all-upper bounds. 
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Artificial Joint 
Probability Distribution

[*]S. Tolo, E. Patelli, and M. Beer, “An Inference Method for Bayesian Networks with Probability Intervals,” ICVRAM ISUMA 
UNCERTAINTIES conference proceedings, no. April, 2018.



Method 1: Naïve approach (inner approximation)

• Take the joint probability distribution function of upper bounds of all the variables in the 
net. Artificial JPDs are created (each containing a case of the query node).

• Inner approximation is obtained by finding the artificial JPD that maximizes and minimizes 
the posterior probability of queried variable. 
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𝑚𝑖𝑛 𝑚𝑖𝑛

Artificial Joint 
Probability Distribution



Method 2: Approximate inference

• Approximate inference with Linear programming. Optimization task.

• Reduce credal sets to singletons called Extreme Points 

different from the Free variable Xj. 

So the constrained queried-variable (x0) lower bound is:

Linear combination of Xj local probabilities.

A. Antonucci, C. P. De Campos, D. Huber, and M. Zaffalon, “Approximate credal network updating by linear programming with applications to decision making,” Int. J. Approx. 
Reason., vol. 58, pp. 25–38, 2015.

H.D. Estrada-Lugo 20



Method 2: Approximate inference

• Iterations over Xj are done to perform a local search.

• Once an approximation (extreme point) to the optimal solution is calculated. The Xj 
variable released and a new Xj is used as the free variable. 

• The programme stops iterating when no further improved  approximation is found.

A. Antonucci, C. P. De Campos, D. Huber, and M. Zaffalon, “Approximate credal network updating by linear programming with applications to decision making,” Int. J. Approx. 
Reason., vol. 58, pp. 25–38, 2015.
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Method 2: Approximate inference

• is an    upper approximation of lower probability bound               of the CN.

• is lower approximation of the upper bound              of the CN.

A. Antonucci, C. P. De Campos, D. Huber, and M. Zaffalon, “Approximate credal network updating by linear programming with applications to decision making,” Int. J. Approx. 
Reason., vol. 58, pp. 25–38, 2015.
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Case of study: Railway system

Derailment probability, taking into
account:

• Obstructions in the railway due to:

• Earthworks

• Terrain

• Train speed.

• Damage in the tracks.
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Results

• Embankment slope over which the
rail tracks are placed.

• Terrain quality depending on:

• Earthworks

• Cut slopes

• Embankment slope steepness

• Derailment, due to factors:

• Final train speed

• Track obstructions

• Track defects

H.D. Estrada-Lugo 

Embankment slope

Terrain quality Derailment

Steep

Gradual

Good

Bad Yes

No
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Computational time

Results

• Obstructions in the railway due to:

• Earthworks

• Terrain

• Train speed.

• Damage in the tracks.
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Method 1: Naïve inference

This method is computationally cheap.

 Reliable when extreme scenarios are of the interest.

 Real probability values will be enclosed inside the bounds.

 Uncertainty attached to the bounds provided.

 No need for inference computation on node-state combination irrelevant.

o Boolean variables.

o Overestimation of upper bounds.

o Underestimation of lower bounds.

o Not suitable for large networks, number of inference computations increase as 2n.
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Method 2: Approximate inference

Does not suffer from large credal sets.

 Follows the same topology of BN.

 Does not requires to indicate the extreme points.

 It can be used with variables with many states and/or parents.

 Provides inner approximate solutions.

 Fast and accurate.

o Local credal sets specified by lean constraints.*

o Not for local credal sets given by explicit enumeration of the extreme points.

o Outer approximations are currently excluded. 

o A combination of inner with outer approximations can bring reliable inferences.
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Conclusions

• Two different inference computation methods were tested to compare their
performance.

• The use of interval probabilities allows to consider a broader range data types
(imprecise data sets).

• Imprecise probabilities allows to take into account epistemic uncertainty due
to the vagueness or lack of data.

• This model can be applicable to different complex technological facilities.

• Work is carried out to provide a reliable method to provide an outer
approximation of the probability bounds and study convergence.
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Thank you for your attention

Approximate inference methods for Advanced Bayesian networks 
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