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Introduction

What is the goal of probability?

Probability seeks to determine the plausibility of the different
outcomes of an experiment when these cannot be predicted
beforehand.

» What is the probability of guessing the 6 winning numbers in
the lottery?

» What is the probability of arriving in 30" from the airport to
the center of Oviedo by car?

» What is the probability of having a sunny day tomorrow?
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Introduction

In this talk, we will consider finite spaces only.

Given such a space €, a probability is a functional P on ()
satisfying:

> P(0) =0,P(Q) =1.
» AC B= P(A) < P(B).
> ANB =0 = P(AUB) = P(A) + P(B)
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Introduction

Graphical representations as points in |Q| space

P(A) = 0.2, P(B) = 0.5, P(C) = 0.3
P(B) P(B)

1

P(c) ! P(C) P(A)
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Introduction

Graphical representations as points in |Q| space

P(A) =0.2, P(B) = 0.5, P(C)=0.3
P(B)
1

P(A)
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Introduction

Aleatory vs. epistemic probabilities

In some cases, the probability of an event A is a property of the
event, meaning that it does not depend on the subject making the
assessment. We talk then of aleatory probabilities.

However, and specially in the framework of decision making, we
may need to assess probabilities that represent our beliefs. Hence,
these may vary depending on the subject or on the amount of
information he possesses at the time. We talk then of subjective
probabilities.
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Introduction

Example: frequentist probabilities

P(A) = lim number of occurrences of A in N trials
N— oo N

Examples

» game of chance (loteries, poker, roulette)
» physical quantities in
» engineering (component failure, product defect)

» biology (patient variability)
> economics , ...

But. ..
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Introduction

Frequentist probabilities: end of the story?

...Some uncertain quantities are not repeatable/not statistical
quantities:
» what's the age of the king of Sweden?

v

has it rained in Oviedo yesterday?

when will YOUR phone fail? has THIS altimeter failed? is
THIS camera not operating?

v

what are the chances that Spain wins the next World Cup of
football? Or Eurovision? Or anything???

v

=- can we still use probability to model these uncertainties?
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Introduction

Credal sets

In a situation of imprecise information, we can then consider,
instead of a probability measure, a set M of probability measures.
Then for each event A we have a set of possible values
{P(A) : P € M}. By taking lower and upper envelopes, we obtain
the smallest and greatest values for P(A) that are compatible with
the available information:

P(A) = fin P(A) and P(A) = Fr’neajé P(A) VA C Q.

The two functions are conjugate: P(A) =1 — P(A°) for every
A C Q, so it suffices to work with P.
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Introduction

Credal set example

X1(A) =0, Xi(B) =20, X1(C) = 10, P(X1) =0
Xo(A) = 20, Xo(B) = —10, Xo(C) = —10, P(X2) = 0

P(B) P(B)
1

P(C) !

I. Couso, E. Miranda ©2018 Introduction



Introduction

Exercise

Before jumping off the wall, Humpty Dumpty tells Alice the
following:
“I have a farm with pigs, cows and hens. There are at
least as many pigs as cows and hens together, and at
least as many hens as cows. How many pigs, cows and
hens do | have?”

» What are the probabilities compatible with this information?

» What is the lower probability of the set {hens, cows}?
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Introduction

Convexity: why (not)?

» The lower and upper envelopes of a set M of probability
measures coincide with the lower and upper envelopes of its
convex hull CH(M).

» Closed convex sets are representable by their extreme points,
and we have a number of mathematical tools at our disposal.

» However, the assumption of convexity is not always
innocuous:
» It may have implications when modelling independence.
> It is also important in connection with preference modelling.
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Introduction

Extreme points

P is an extreme point of the credal set M when there are no
P1 # P> in M and « € (0,1) such that P = aP; + (1 — a)P-.
For instance, the extreme points of the previous credal set on
{A, B, C} are:

> p(A) = 1,p(B) = 0,p(C) = 0

> p(A) =0,p(B) =0,p(C) =1

» p(A) =0.25,p(B) =0.5,p(C) =0.25

P(B)

P(C) P(A)
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Introduction

Credal sets and lower and upper probabilities

A set M of probability measures always determines a lower and an
upper probability, but there may be different sets associated with
the same P, P. The largest one is

M(P) = {P: P(A) > P(A) YA C Q},
and we call it the credal set associated with P. It holds that
M(P) :={P: P(A) < P(A) VA C Q},

where P is the conjugate of P.
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Introduction

Credal sets or lower probabilities?

In some cases, the easiest thing in practice is to determine the set
M of probability measures compatible with the available
information. This can be done with assessments such as
comparative probabilities (A is more probable than B), linear
constraints (the probability of A is at least 0.6), etc. Examples will
appear in the lecture of Cassio de Campos.

Even if sets of probabilities are the primary model, it may be more
efficient to work with the lower and upper probabilities they
determine. These receive different names depending on the
mathematical properties they satisfy.
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Non-additive measures : -
Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Capacities

Let P: o(2) — [0,1]. It is called a capacity or non-additive
measure when it satisfies:

1. P(0) =0, P(2) =1 (normalisation).
2. AC B= P(A) < P(B) (monotonicity).

Capacities are also called fuzzy measures or Choquet capacities of
the 1st order. When they are interpreted as lower (resp.,upper)
bounds of a probability measure they are also called lower (resp.,
upper) probabilities.
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Non-additive measures : -
Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Examples of properties of lower and upper probabilities

Among the properties that capacities may satisfy, we can consider
some among the following:

» P(AUB) > P(A) + P(B) YA, B disjoint (super-additivity).

» P(AUB) < P(A) + P(B) YA, B disjoint (subadditivity).

» P(U,A,) = sup, P(A,) for every increasing sequence (lower
continuity).

» P(NpA,) = inf, P(Ay) for every decreasing sequence (upper
continuity).

The choice between them depends on the interpretation of P.
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Non-additive measures : -
Coherent lower probabilities
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Belief functions
Possibility measures
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Conjugate functions

Consider non-additive measure P on ©(Q) and its conjugate P:

P(A)=1— P(A) VAC Q.

e P is subadditive < P superadditive.

e P lower continuous < P is upper continuous.
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Non-additive measures : -
Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Avoiding sure loss

A first assessment we can make on a lower probability P is that its
associated credal set M(P) is non-empty. In that case, we say
that P avoids sure loss.

For instance, if Q = {1,2} and we assess P({1}) = P({2}) = 0.6,
the condition is not satisfied.

This is a minimal requirement if we want to interpret P as a
summary of a credal set.
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Non-additive measures : -
Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Some types of non-additive measures

>

Coherent lower probabilities.

v

2-monotone capacities.

v

Belief functions.

v

Possibility /necessity measures.

v

Probability boxes.
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Non-additive measures Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Coherent lower probabilities

We say that P : P(2) — [0,1] is a coherent lower probability when
P(A) = min{P(A): P € M(P)} VAC Q.
Equivalently, its conjugate function P satisfies

P(A) = max{P(A): P € M(P)} VAC Q.
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Non-additive measures Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Example

Assume that Q = {1,2,3} and that P is given by:

P({1})=01 P({2})=02  P({3})=03
P({1,2})=0.6 P({1,3})=0.6 P({2,3})=0.6.

Then P is NOT coherent: it is impossible to find a probability
measure P > P such that P({1}) = 0.1.
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Non-additive measures Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Becoming coherent: the natural extension

If P is not coherent but its associated credal set M(P) is not
empty, we can make a minimal correction so as to obtain a
coherent model: there is a smallest P’ > P that is coherent. This
is called the natural extension of P.

To obtain it, we simply have to take the lower envelope of the
credal set M(P).
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2-monotone capacities
Belief functions
Possibility measures
p-boxes

Exercise

Mr. Play-it-safe is planning his upcoming holidays in the Canary
Islands, and he is taking into account three possible disruptions: an
unexpected illness (A), severe weather problems (B) and the
unannounced visit of his mother in law (C).

He has assessed his lower and upper probabilities for these events:

A B c | D
0.05 1005|0205
02|01 05|08

/o

where D denotes the event ‘Nothing bad happens’. He also
assumes that no two disruptions can happen simultaneously.
Are these assessments coherent?
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Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
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2-monotone capacities

Let P be a lower probability defined on P(2). It is called a
2-monotone capacity when

P(AUB)+P(ANB) > P(A) + P(B)
for every pair of subsets A, B of Q.

2-monotone capacities are also called submodular or convex.

They do not have an easy interpretation in the behavioural theory,
but they possess interesting mathematical properties.
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Properties (Denneberg, 1994)

e A 2-monotone capacity is a coherent lower probability
(Walley, 1981).

e Let P be a probability measure and let f : [0,1] — [0,1] be a
convex function with £(0) = 0. The lower probability given by
P(Q) =1, P(A) = f(P(A)) for every A # Q is a 2-monotone
capacity.
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Example

A roulette has an unknown dependence between the red and black
outcomes, in the sense that the first outcome is random but the
second may depend on the first (with the same type of dependence
in both cases). Let H;="the i-th outcome is red", i = 1,2.

Since P(red) = P(black) = 0.5 we should consider

P(H,) = P(H1) = P(H,) = P(H,) = 0.5
P(H; N Hy) =0, P(H; N Hy) = 0.5, P(H; U Hy) = 0.5, P(H; U Hy) = 1.

Then P(Hy U Hy) + P(Hy N Hp) = 0.5 < P(Hy) + P(H,) = 1, and
our beliefs would not be 2-monotone.
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Exercises

1. Let P a 2-monotone capacity defined on a field of sets A, and
let us extend it to p(Q2) by

P.(A) =sup{P(B) : B C A}.

Show that P, is also 2-monotone.

2. Consider Q = {1,2,3,4}, and let P be the lower envelope of
the probabilities Py, P, given by

P1({1}) = P1({2}) = 0.5, P1({3}) = P1({4}) = 0
Pa({1}) = P2({2}) = P2({3}) = P2({4}) = 0.25.

Show that P is not 2-monotone.
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Further reading on 2-monotonicity

» P. Walley, Coherent lower (and upper) probabilities, Statistics
Research Report. University of Warwick, 1981.

» D. Denneberg, Non-additive measure and integral, Kluwer,
1994,

» G. Choquet, Theory of capacities. Annales de |'Institute
Fourier, 1953.

» G. de Cooman, M. Troffaes, E. Miranda, J. of Math. Analysis
and Applications, 347(1), 133-146, 2009.
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Belief functions (Shafer, 1976)

A lower probability P is called co-monotone when for every natural

number n and every family {A;1,..., A,} of subsets of Q, it holds
that

P(ALU...A) > > (=D)I'FP(nigA). (1)
0#1C{1,...,n}

When Q is finite co-monotone capacities are called belief functions.
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The evidential interpretation

Belief functions were mostly developed by Shafer starting from
some works by Dempster in the 1960s. The belief of a set A,
P(A), represents the existing evidence that supports A.

We usually assume the existence of a true (and unknown) state in
Q for the problem we are interested in. However, this does not
imply that P is defined only on singletons, nor that it is
characterised by its restriction to them.
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Example

A crime has been committed and the police has two suspects,
Chucky and Demian. An unreliable witness claims to have seen
Chucky in the crime scene. We consider two possibilities: either
(a) he really saw Chucky or (b) he saw nothing. In the first case,
the list of suspects reduces to Chucky, and in the second it remains
unchanged.

If we assign P((a)) = a, P((b)) = 1 — «, we obtain the belief
function P given by
P(Chucky) = a, P(Demian) = 0, P(Chucky, Demian) = 1.
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Probability measures

A particular case of belief functions are the probability measures.
They satisfy Eq. (1) with = for every n.

This implies that all the non-additive models we have seen so far
(coherent lower probabilities, 2- and n-monotone capacities, belief
functions) include as a particular case probability measures.
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Basic probability assignment

When € is finite, we can give another representation of belief
functions, using the so-called basic probability assignment.

A function m: p(2) — [0, 1] is called a basic probability
assignment when it satisfies the following conditions:

1. m(0) = 0.
2. > acam(A) =1.
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Relationship with belief functions

e Given a basic probability assignment m, the function
P : () — [0, 1] given by

is a belief function.
e If P is a belief function, the map m: p(Q2) — [0, 1] given by
m(A) =Y (-1)*\?IP(B)
BCA
is a basic probability assignment.

Moreover, this correspondence is one-to-one.
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The function m is also called Mobius inverse of the belief function
P. The concept can also be applied to 2-monotone capacities. The
function m : () — R given by

m(A) = (~1)"FIp(B)

BCA

is the Mobius inverse of P, and it holds that P(A) = > g, m(B).
Note that m need not take positive values only; in fact,

P belief function <= m non-negative
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Focal elements

Given a lower probability P with Mobius inverse m, a subset A of
Q is called a focal element of m when m(A) # 0. In particular, the
focal elements of a belief function are those sets for which

m(A) > 0.

The focal elements are useful when working with a lower
probability. In this sense, in game theory we have the so-called
k-additive measures, which are those whose focal elements have
cardinality smaller or equal than k.
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Relationship with upper probabilities

Given a belief function Bel : p(Q2) — [0, 1], its conjugate
Pl : p(2) — [0, 1], given by

PI(A) = 1 — Bel(A°),

is called a plausibility function.
Pl are Bel related to the same basic probability assignment, in the
case of Pl by the formula
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Exercises

Consider Q = {1, 2,3}.

1. Let m be the basic probability assignment given by
m({1,2}) = 0.5, m({3}) = 0.2, m({2,3}) = 0.3. Determine
the belief function associated with m.

2. Consider the belief function P given by P(A) = @ for every
A C Q. Determine its basic probability assignment.
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Further reading on belief functions

» G. Shafer, A mathematical theory of evidence. Princeton,
1976.

» A. Demspter. Ann. of Mathematical Statistics, 38:325-339,
1967.

» R. Yager and L. Liu (eds.), Classic works in the
Dempster-Shafer theory of belief functions. Studies in
Fuzziness and Soft Computing 219. Springer, 2008.

...and the talk by Sébastien Destercke on Saturday!
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Possibility and necessity measures (Dubois and Prade,
1988)

A possibility measure on Q is a function I : (Q2) — [0, 1] such
that
M(AU B) = max{M(A),M(B)} VA, B C Q.

The conjugate function of a possibility measure, given by
Nec(A) =1 —I(AC), is called a necessity measure, and satisfies

Nec(AN B) = min{Nec(A), Nec(B)}

for every A, B C Q.

I. Couso, E. Miranda ©2018 Introduction



Non-additive measures : -
Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Properties

e A possibility measure is a plausibility function, and a necessity
measure is a belief function. They correspond to the case
where the focal elements are nested.

e A possibility measure is characterised by its possibility
distribution 7 : Q — [0, 1], which is given by w(w) = MN({w}).
It holds

M(A) = ACQ
(A) = maxm(w) YA C
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Exercise

Consider Q = {1,2,3,4}.

1. Let I be the possibility measure associated with the
possibility distribution
(1) = 0.3,7(2) = 0.5,7(3) = 1,7(4) = 0.7. Determine its
focal elements and its basic probability assignment.

2. Given the basic probability assignment m({1}) =
0.2,m({1,3}) =0.1,m({1,2,3}) = 0.4, m({1,2,3,4}) = 0.3,
determine the associated possibility measure and its possibility
distribution.
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Relationship with fuzzy sets

Let X : Q — [0, 1] be a fuzzy set. We can interpret X(w) as the
degree of compatibility of w with the concept described by X. On
the other hand, given evidence of the type “Q is X", X(w) would
be the possibility that €2 takes the value w.
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The possibility measure 1 associated with the possibility
distribution m = X provides the possibility that €2 takes values in
the set A.

Hence, in the previous figure M(A) would be the degree of
possibility of the proposition “a young person’s age belongs to the
set A”.

There are other interpretations of 7 in terms of likelihood
functions, probability bounds, random sets, etc.
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Relationships between the definitions

The relationships between the different types of lower and upper
probabilities are summarised in the following figure:

coherent lower probabilities

2-monotone capacities

belief functions

possibility
measures

probability
measures
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Further reading on possibility theory

» D. Dubois and H. Prade, Possibility theory. Plenum, 1988.
» L. Zadeh, Fuzzy Sets and Systems, 1, 3-28, 1978.

» G. Shafer, A mathematical theory of evidence, Princeton,
1976.

» G. de Cooman, Int. J. of General Systems, 25, 291-371, 1997.

I. Couso, E. Miranda ©2018 Introduction



Non-additive measures : -
Coherent lower probabilities

2-monotone capacities
Belief functions
Possibility measures
p-boxes

Distribution functions and p-boxes

We shall call a function F : [0,1] — [0, 1] a distribution function
when it satisfies the following two properties:

1. w1 <wy = F(wr) < F(wz2) (monotonicity).
2. F(1) =1 (normalisation).

A p-box is a pair of distribution functions, (F, F), satisfying
F(w) < F(w) for every w € [0, 1].

The concept can be extended to arbitrary ordered spaces,
producing then the so-called generalised p-boxes.
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Particular cases

A p-box (F, F) is called:
> precise when F = F.
» continuous when both F, F are continuous, meaning that

F(w) = sup F(w') = inf F(),F(w)= sup F(&) = inf F(w)

/ ’
w<w w'>w W' <w w'>w

for every w € [0, 1].

» discrete when both F, F assume a countable number of
different values.
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EIES

. 1 0
Precise p-box General p-box
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P-boxes as non-additive measures

A p-box can be represented as a lower probability P = on

K={[0,w]: we0,1]} U{(w,1]: w € [0,1]}

by
Pe£(0,0]) i= F(w) and P ¢((w,1]) = 1 — F(w).

® Pg g is a belief function.
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Further reading on p-boxes

» S. Ferson, V. Kreinovich, I. Ginzburg, D. Mayers, K. Sentz.
Technical report SAND2002-4015. 2003.

» M. Troffaes, S. Destercke. Int. J. of Approximate Reasoning,
52(6), 767-791, 2011.

» R. Pelessoni, P. Vicig, |. Montes, E. Miranda. 1JUFKS, 24(2),
229-263, 2016.

...and the talk by Scott Ferson tomorrow!
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Natural extension

Gambles

A function X : Q2 — R is called a gamble.
If we specify a probability measure P on (), it uniquely
determines its expectation on any gamble X : Q — R:

Ex(X) =Y X(w)P({w}).
we

Similary, if we have a set of probabilities M, it determines lower
and upper expectations:

E(X) = min Ep(X) and E(X) = max E,(X).
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Natural extension

Coherent lower previsions

If we define £(Q2) := {X : Q@ — R}, a coherent lower prevision on
L(€2) is a function P such that

» P(X)>minX
> P(AX) = AR(X)
» P(X+Y)>P(X)+P(Y)
for every X, Y € £(Q) and every A > 0.

They can be given a behavioural interpretation in terms of
acceptable buying prices.
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Natural extension

The behavioural interpretation

The lower prevision of X can be understood as the supremum
acceptable buying price for X: X — u is desirable for any

1< P(X).

Similarly, the upper prevision of X would be the infimum
acceptable selling price for X: p — X is desirable for any 1 > P(X).

We buy X we scll X

Undecided
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Natural extension

Exercise

Let P be the lower prevision on £({1,2,3}) given by

~ min{X(1), X(2), X(3)} . max{X(1), X(2), X(3)}
P(X) = 5 + 5 .

Is it coherent?
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Natural extension

Does it matter?

In general, coherent lower previsions are more expressive than
coherent lower probabilities:

» Although the restriction to indicators of events of a coherent
lower prevision is a coherent lower probability, a coherent lower
probability may have more than one extension to gambles.

» There is a one-to-one correspondence between coherent lower
previsions and convex sets of probability measures.

» However, the credal sets determined by a coherent lower
probability are not as general: they always have a finite
number of extreme points, for instance.

For these reasons, we may work with coherent lower previsions as
the primary model.
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Natural extension

Extension from events to gambles

Given a coherent lower probability P : p(£2) — [0, 1], its natural
extension to £(Q) is

E(X) :=min{Ey(X) : P(A) > P(A) YA C Q}.
It is the smallest coherent lower prevision on £(2) that agrees with
P on ().
e When P is 2-monotone, the natural extension can be

computed with the Choquet integral: we have

n

E(X) =Y (X(wi) = X(wir1)P({wr, - .., wil),

i=1
where X(w1) > X(w2) > -+ > X(wn), and with X(wpy1) = 0.
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Natural extension

Exercise

Let P, be the vacuous lower probability relative to a set A, given
by the assessment P4(A) = 1.

Prove that the natural extension E of P, is equal to the vacuous
lower prevision relative to A:

E(X) = min X(w),

for any X € L(Q).
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Natural extension

Further reading on coherent lower previsions

» P. Walley, Statistical reasoning with imprecise probabilities.
Chapman and Hall, 1991.

» T. Augustin, F. Coolen, G. de Cooman, M. Troffaes (eds.),
Introduction to imprecise probabilities. Wiley, 2014.

» M. Troffaes, G. de Cooman, Lower previsions. Wiley, 2014.
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Sets of desirable gambles

Sets of desirable gambles

If model the available information with a set M of probability
measures, we can consider the non-additive measure it induces (a
coherent lower probability) or the expectation operator it
determines (a coherent lower prevision).

Equivalently, we can assess which gambles we consider desirable or
not.

In the precise case, we say that X is desirable when its expectation
is positive.

How to convey this idea with imprecision?
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Sets of desirable gambles

Rationality axioms for sets of desirable gambles

If we consider a set of gambles that we find desirable, there are a
number of rationality requirements we can consider:

» A gamble that makes us lose money, no matter the outcome,
should not be desirable, and a gamble which never makes us
lose money should be desirable.

» A change of utility scale should not affect our desirability.
» |f two transactions are desirable, so should be their sum.

These ideas define the notion of coherence for sets of gambles.
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Sets of desirable gambles

Coherence of sets of desirable gambles

A set of desirable gambles is coherent if and only if

(D1) If X <0, then X ¢ D.
(D2) If X >0, then X € D.
(D3) If X, Y € D, then X + Y € D.
(D4) If X € D, A >0, then AX € D.
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Sets of desirable gambles

Exercise

Let Q = {1,2,3}, and consider the following sets of desirable
gambles:

Dy :={X: X(1)+ X(2) + X(3) > 0}.
Dy = {X : max{X(1), X(2), X(3)} > 0}.

Is D1 coherent? And D,?
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Sets of desirable gambles

Connection with coherent lower previsions

e If D is a coherent set of gambles, then the lower prevision it
induces by
P(X) =sup{p: X — € D}
is coherent.

e Conversely, a coherent lower prevision P determines a coherent
set of desirable gambles by D := {X : P(X) > 0} U {X > 0}.
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Sets of desirable gambles

Hence, we have three equivalent representations of our beliefs:

1. Coherent lower previsions.
2. Closed and convex sets of probability measures.

3. Coherent sets of desirable gambles.

In fact, sets of desirable gambles have an extra layer of expressivity
that helps dealing with the problem of conditioning on sets of
probability zero.
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Sets of desirable gambles

Connection with preference relations and decision theory

If we have a coherent set of desirable gambles D, we can define a
preference relation > by

X>=Y < X-YeD.

This is one of the (many) possible optimality criteria when we
want to establish our preferences with imprecise probabilities.

More of these will appear in the lecture of Matthias Troffaes on
Thursday.
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Sets of desirable gambles

Further reading on sets of desirable gambles

» |. Couso, S. Moral. Int. J. of Appr. Reasoning,
52(7):1034-1055, 2011.

» E. Miranda, M. Zaffalon. Ann. Math. Artif. Intelligence,
60(3-4):251-309, 2010.

» E. Quaeghebeur. Introduction to imprecise probabilities,
chapter 1. Wiley, 2014.
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Stochastic independence

Notation

» Joint probability: x: (1 x Qo) — [0,1]
» The marginal probability of 1 on Q; is u1 : (1) — [0, 1]
defined as:

p1(A) = p(A x Q2), VA € p(1).

» The marginal probability of 1 on Q5 is pp @ p(2) — [0, 1]
defined as follows:

p2(B) = p( x B), VB € p(Qy).

» For the sake of simplicity, Q1 and €, are assumed to be finite.
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Stochastic independence

Stochastic independence in Probability Theory

» Independent events: A and B are independent if (three

equivalent conditions):
> (AN B) = p(A) - u(B) or
> 1u(AIB) = u(A), if u(B) > 0 or
> u(B|A) = u(B), if u(A) > 0.

» Independent variables: X and Y are independent random
variables if X~1(A) Y~1(B) are independent events for every
Ac X, Be).

> Product probability: 1 is a “product probability” when

(A x B) = n1(A) - p2(B), VA € p(11), B € p(€22)

(Equivalently, when A x Qy and Q3 x B are independent
events -wrt p-, VA € p(21), B € p(22).)
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Stochastic independence

Notation

> Credal set M.
» Marginal credal sets
» Mi={pi:p(Q) >R :peM}i=1,2
> Joint credal set associated to a marginal credal set
» M ={u:p( x ) >R e M} i=1,2.
» CH(P) : convex hull of a (non-necessarily convex) set of

probability measures.
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Stochastic independence

Outline

> Independence conditions expressed in terms of M, Mj and
Mo.

» Construction of the largest (joint) credal set satisfying certain
independence condition from a pair of marginal credal sets

./\/ll and Mz.
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

. . - Independence in the selection and strong independence
Independence concepts in Imprecise Probability ! = F

Independence concepts in Imprecise Probability

» Epistemic irrelevance
» Epistemic independence

> Independence in the selection
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

. . - Independence in the selection and strong independence
Independence concepts in Imprecise Probability ! = F

Epistemic irrelevance

Consider the (joint) credal set M on Q3 x Q5. Consider an
arbitrary i € M and denote:

> o], the probability measure on €2, defined as:
Holwy (A) = (1 x Al{wi} x Q2), VA C Q.

> Mo, = {ftofy : € M}, Vwr € Q.

We say that the first experiment is epistemically irrelevant to the
second one when My, = M, Vw; € Q.
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

. . - Independence in the selection and strong independence
Independence concepts in Imprecise Probability ! = F

Irrelevant natural extension

Consider two credal sets M7 and M5 on €3 and 5 respectively.
The largest credal set M under which the first experiment is
epistemically irrelevant to the second, i.e, the set of joint
distributions p for which:

> p1 € My

> folu, € M2, Vw1 €y

is called the irrelevant natural extension.
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

. . - Independence in the selection and strong independence
Independence concepts in Imprecise Probability ! = F

Exercise

» We have three urns. Each of them has 10 balls which are
coloured either red or white.

» Urn 1: 5 red, 2 white, 3 unknown; Urns 2 and 3: 3 red, 3
white, 4 unknown (not necessarily the same composition).

» A ball is randomly selected from the first urn.

» If the first ball is red then the second ball is selected randomly
from the second urn, and if the first ball is white then the
second ball is selected randomly from the third urn.
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

. . - Independence in the selection and strong independence
Independence concepts in Imprecise Probability ! = F

Exercise (cont.)

» Our uncertainty about the pair of colours is modelled by a set
of joint probabilities of the form p where

> u({(r,w2)}) = p({r})pzr({w2}), w2 € {r, w}

> p({(w,w2)}) = p({w )z ({w2}), wa € {r, w},
with

> 0.5 < pu({r}) <038,

> 0.3 < o ({w2}) <0.7 and

» 0.3 < piojw({w2}) <0.7.

» The above set has eight extreme points, each of them

determined by a combination of the extremes of the marginal
on 7 and the two conditionals.

Determine the collection of eight extreme points of the above set.
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

. . - Independence in the selection and strong independence
Independence concepts in Imprecise Probability ! = F

Exercise

Consider the last exercise where our uncertainty about the pair of
colours is modelled by a set of joint probabilities of the form u
where

s u({(ryw2)}) = p({rhma, (w2}, wa € {r, w}

> H({(W’w2)}) = ,LL1({W})/L2|W({OU2}),CL)2 € {rv W}v
with

» 0.5 <pui({r}) <08,

> 0.3 < g ({w2}) < 0.7 and

» 0.3 ,UQ‘W({WQ}) <0.7.
Calculate the upper probability that the first ball is red, given the
colour of the second ball. Does the collection of conditional
probabilities My, = {u1), 1 p € M} coincide with M;?
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension
Independence in the selection and strong independence

Independence concepts in Imprecise Probability

Epistemic independence and independent natural
extension

Consider the (joint) credal set M on Q1 x 5. We say that the
two experiments are epistemically independent when each one is
epistemically irrelevant to the other. The independent natural
extension M can be constructed as the intersection of two
irrelevant natural extensions.
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

Independence concepts in Imprecise Probability Independence in the selection and strong independence

Independence in the selection and strong independence

We say that there is independence in the selection when every
extreme point u of M factorizes as u = p1 ® pun. M satisfies
strong independence if it can be expressed as:

M= CH{p1 ® p2 : pu1 € My, uz € Ma}).
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

Independence concepts in Imprecise Probability Independence in the selection and strong independence

Exercise

> Assume that we have two urns with the following
composition: Urn 1: 5 red, 2 white, 3 unknown; Urn 2: 3 red,
3 white, 4 unknown;

» the 7 balls in the two urns whose colours are unknown are all
the same colour;

» the drawings from the two urns are stochastically independent.

Determine the convex hull of the set of probabilities that is
compatible with the above information. Does it satisfy
independence in the selection? Does it satisfy strong
independence?
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Epistemic irrelevance and irrelevant natural extension
Epistemic independence and independent natural extension

Independence concepts in Imprecise Probability Independence in the selection and strong independence

Exercise

> Assume that we have two urns with the following
composition: Urn 1: 5 red, 2 white, 3 unknown; Urn 2: 3 red,
3 white, 4 unknown;

» the drawings from the two urns are stochastically independent.

Determine the convex hull of the set of probabilities that is
compatible with the above information. Does it satisfy
independence in the selection? Does it satisfy strong
independence?
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Independence of the marginal sets and unknown interaction

Independence of the marginal sets

M satisfies independence of the marginal sets if for any u; € Mj
and any po € My there exists ;o € P whose marginals are p; and

H2.
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Independence of the marginal sets and unknown interaction

Exercise

Consider the product possibility space Q2 = Q1 x Q5 where

Qy = Qp = {r,w}. Consider the credal set M = CH({u, '})
where = (0.01,0.09,0.09,0.81) and 1/ = (0.81,0.09,0.09,0.01).
Is independence of the marginal sets satisfied?
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Independence of the marginal sets and unknown interaction

Unknown interaction

Consider two credal sets M3 and any Mj on Q1 and €2y,
respectively. Let M7 and M3 denote the (convex) collections of
joint probability measures:

1={p m e Ma}, M= {p: pp2 € Ma}.

The largest credal set induced by Mj and M and satisfying
independence of the marginal sets is Mj N M3. If
M = M7 N M3 we say that there is unknown interaction.
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Independence of the marginal sets and unknown interaction

Exercise

» We have two urns. Each of them has 10 balls which are
coloured either red or white.

» Urn 1: 5 red, 2 white, 3 unknown; Urn 2: 3 red, 3 white, 4
unknown.

» One ball is chosen at random from each urn. We have no
information about the interaction between the two drawings.
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Independence of the marginal sets and unknown interaction

Exercise (cont.)

(a) Determine the marginal credal set on Q3 = {r, w}
characterizing our incomplete information about the first
drawing. Denote it Mj.

(b) Determine the marginal credal set on Qp = {r, w}
characterizing our incomplete information about the second
drawing. Denote it M.

(c) Consider the joint possibility space Q = {rr, rw, wr, ww} and
the joint probability ;= (0.2,0.4,0.3,0.1) defined on it.

» Check that it belongs to the set M = M3 N M3.

» Design a random experiment compatible with the above
incomplete information associated to this joint probability.
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Independence of the marginal sets and unknown interaction

Exercise

Consider the last example of two urns. Characterize our

uncertainty about the color of both balls by means of a credal set
on ) = Ql X Qz.
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Set-valued data

Set-valued data

» Consider a two-dimensional random vector (X, Y)
representing a pair of attributes.

» Suppose that we are provided with set-valued information
about each outcome of X and Y.

> Let the random set I'x (resp. ['y) represent our incomplete
information about X (resp. about Y).

» Information about X(w) (resp. about Y (w)) : X(w) € INx(w)
(resp. Y(w) € T'y(w)).

> Let my and my respectively denote the bma induced by I'x
and lNy.

» Let m denote the bma associated to ' =T'x x Ny.
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Set-valued data

Random set independence vs independence in the selection

There is random set independence when:
m(A X B) = ml(A) . mQ(B), VAEe Q(Ql), B e W(Qz)

(Or, equivalently, when the two random sets ['x and Iy are
stochastically independent, i.e:

P(Tx =ATy =B)=P(Tx =A)-P(T'y = B),

VYV Ac p(Ql), B ¢ p(QQ))
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Set-valued data

Example

» We have two urns. Each of them has 10 balls which are
coloured either red or white.

» Urn 1: 5 red, 2 white, 3 unpainted; Urn 2: 3 red, 3 white, 4
unpainted.

» One ball is chosen at random from each urn.

» (If they have no colour, there may be arbitrary correlation
between the colours they are finally assigned).
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Set-valued data

Example (cont.). Random sets

» Information about the color of the 1st ball:
P(T'x ={r}) =05, P(T'x ={w}) =0.2,
P(Fx ={r,w})=0.2.
» Information about the color of the 2nd ball:
P(l'y ={r}) =03, P(T'y = {w}) =0.3,
P(Ty ={r,w})=0.4.
» Information about the pair of colors:
P(Tx = A1, Ty = A2) = P(Tx = A1) - P(Ty = Az).
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Set-valued data

Example (cont.). Marginal and joint mass functions

m1, my and m respectively represent the mass functions of 'y, 'y
and ' = I'X X ry.

» U 1: mi({r}) =05, m({w}) =0.2, m({w,r}) =0.3.
» Urn 2: my({r}) = 0.3, m({w}) = 0.3, m({w, r}) = 0.4.
» Joint mass function m(Al X Ag) = m1(A1) . mQ(Az).
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Set-valued data

Exercise. Upper and lower bounds for the conditional
probabilities

» Check that the focal sets of the joint mass function m are the
following nine sets: {rr}, {rw}, {rr,rw}, {wr}, {ww},
{wr,ww}, {rr,wr}, {rw,ww}, {rr, rw, wr, ww}.

» Determine the mass values associated to those 9 focal sets.

» Consider the credal set M associated to m and calculate the
minimum possible value for the conditional probability
p({r,wh x{r}l{r} x {r,w}):
min{pu({r,w} x {r}[{r} x {r,w})[p e M} =

min{%\ué/\/l}.

» Does the above minimum coincide with 0.37
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Set-valued data

Exercise: Random set independence vs independence in the
selection (I. Couso, D. Dubois and L. Sdnchez, 2014)

> A light sensor displays numbers between 0 and 255.
» 10 measurements per second.

» If the brightness is higher than a threshold (255), the sensor
displays 255 during 3/10s.
Complete the following table, about six consecutive measurements,

where the actual values of brightness are independent from each
other:

actual values 215 150 200 300 210 280
displayed quantities 215 150 200 255
set-valued information | {215} {150}

. Couso, E. Miranda ©2018
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Set-valued data

Exercise (cont.)

Consider the information provided about the six measurements of a
light sensor:

actual values 215 150 200 300 210 280
displayed quantities 215 150 200 255
set-valued information | {215} {150}

Let I'; denote the random set that represents the (set-valued)
information provided by the sensor in the i-th measurement.
What is the value of the following conditional probability?:

P(F: 2 [255,00)|i—1 2 [255, 0), [i_p 2 [255, 00)).
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Set-valued data

Exercise: Random set independence vs independence in the
selection (I. Couso, D. Dubois and L. Sdnchez, 2014)

The random variables Xy and Yy respectively represent the
temperature (in °C) of an ill person taken at random in a hospital
just before taking an antipyretic (Xp) and 3 hours later (Yp). The
random set 1 represents the information about Xy using a very
crude measure (it reports always the same interval [37,39.5]). The
random set [, represents the information about Y{ provided by a
thermometer with +/—0.5 °C of precision.

(a) Are Xo and Yj stochastically independent?
(b) Are I'; and Iy stochastically independent?
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Set-valued data

Alternative nomenclature

» Strict independence.- Cozman (2008) says that there is “strict
independence” when every joint probability in the set can be
factorized as the product of its marginals. This condition
violates convexity. It has not been explicitly considered here.

» Independence in the selection.- Cozman (2008) calls it “strong
independence”. Campos and Moral (1995) call it “type 2
independence”.

» Strong independence. Cozman (2008) calls it “strong
extension”. Walley (1991) calls it “type 1 extension”.
Campos and Moral (1995) call it “type 3 independence”.

» Epistemic irrelevance.- Smith (1961) calls it “independence”.
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Set-valued data

Further reading

All the notions reviewed here can be found in:

» |. Couso, S. Moral, and P. Walley. A survey of concepts of
independence for imprecise probabilities. Risk, Decision and
Policy, 5:165-181, 2000.

» |. Couso, D. Dubois, L. Sdnchez, Random Sets and Random
Fuzzy Sets as Ill-Perceived Random Variables: An Introduction
for Ph.D. Students and Practitioners, Springer, 2014.
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Set-valued data

Further reading

» |. Couso, S. Moral, Independence concepts in evidence theory,
International Journal of Approximate Reasoning 51: 748-758, 2010.

» F. G. Cozman, Sets of Probability Distributions and Independence,
Technical Report presented at the 3rd edition of the SIPTA School
(2008).

» L.M. de Campos and S. Moral. Independence concepts for convex
sets of probabilities. In Conf. on Uncertainty in Artificial
Intelligence, pages 108-115, San Francisco, California, 1995.

» V. P. Kuznetsov. Interval Statistical Methods. Radio i Svyaz Publ.,
(in Russian), 1991.

» P. Walley. Statistical Reasoning with Imprecise Probabilities.
Chapman and Hall, London, 1991.
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