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Engineering

• Publication advice joke

• Practical applications

• Get things done, even if not perfectly

• Random variables, not just events

• Logic, arithmetic, FE and ODE models

• Continuous, infinite

• Quick & dirty is better than elegant & abstract

• Sloppy with notation, but big on computability



Installing R

• Locate the latest version by Googling "R" or 

going to http://www.r-project.org/

• Download and install the base software 

– For instance, get version 3.5.0 for Windows from

https://cloud.r-project.org/bin/windows/base/R-3.5.0-win.exe 

• Install R by executing this self-extracting file 

and invoke the program by double-clicking on 

the blue R icon it leaves on your desktop



Leaving R

• To leave R click File / Exit from the main menu 

or enter the command quit()

• R may ask whether you want to save your work

• If you do, your variables and functions will be 

available the next time you invoke R



Install the pba.r probability box library

• If you left R, invoke it again

• Enter rm(list = ls()) to clear its memory

• Click File / Source R code on the main menu

• Locate and Open the file pba.r

• You’ll get the message ":pba> library loaded"



Die-hard RStudio users

• If, against advice, you must use RStudio…

• File / Open file pbox.r

• Source (Ctrl+Shift+S) pbox.r

• Enter the instruction RStudio = TRUE



pba.r probability bounds library

a = normal(5,1)

a

b = uniform(2, interval(3,4))

b

a  +  b
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Generalized convolutions
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a * b

a %*% b

c = a + weibull(8,1) * beta(2,3) / b

c

mean(c) 



Probability bounds analysis in pba.r

• Output

– <enter variable name>, plot, lines, show, summary

• Characterize

– mean, sd, var, median, quantile, fivenum, left, right, 

prob, cut, percentile, iqr, random, range

• Compute

– exp, log, sqrt, abs, round, trunc, ceiling, floor, sign, 

sin, cos, tan, asin, acos, atan, atan2, reciprocate, 

negate, +, -, *, /, pmin, pmax, ^, and, or, not, 

mixture, smin, smax, complement



Probability bounds analysis in pba.r

• Construct

– <distribution>

– histogram

– quantiles

– pointlist

– MM <tab> <tab>

– ME <tab> <tab>

– ML <tab> <tab>

– CB <tab> <tab>

– NV <tab> <tab>

Supported named distributions
bernoulli, beta (B), binomial (Bin), cauchy, chi, chisquared, 
delta, dirac, discreteuniform, exponential, exponentialpower, 
extremevalue, F, f, fishersnedecor, fishertippett, fisk, frechet, 
gamma, gaussian, geometric, generalizedextremevalue (GEV), 
generalizedpareto, gumbel, histogram, inversegamma, laplace, 
logistic, loglogistic, lognormal (L), logtriangular, loguniform, 
negativebinomial, normal (N), pareto, pascal, powerfunction, 
poisson, quantiles, rayleigh, reciprocal, shiftedloglogistic, 
skewnormal (SN), student, trapezoidal, triangular (T), uniform 
(U), weibull

Nonparametric p-boxes
maxmean, minmax, minmaxmean, minmean, meanstd, 
meanvar, minmaxmode, minmaxmedian, 
minmaxmedianismode, minmaxpercentile, 
minmaxmeanismedian, minmaxmeanismode, mmms, mmmv, 
posmeanstd, symmeanstd, uniminmax, unimmmv, unimmms



Testing the pba.r installation
• Start a new instance of R, and enter the command rm(list = ls())

• Click File / Source R code on the main menu; find and Open the file pba.r

• The R Console will display something like 

> source("C:\\Users\\workshop sra\\pba.r")

:pba> library loaded

• Enter plot(runif(100)) which will open a plot window with random points

• Click History / Recording on the main (if History is missing, click the plot)

• Click on the R Console, click File/Open script, and find and Open test pba.r

• Press Ctrl-A to select all its text, then press Ctrl-C to copy it to the clipboard, 

and close the R Editor window

• Click on the R Console, and press Ctrl-V to paste the text into the R Console for 

execution

• Click on the plot window, and press PgUp and PgDn to scroll through graphical 

results of the test calculations

• There should be no error messages on the R Console



Some help text in the pba.r file
# Place this file on your computer and, from within R, select File/Source R code... from the main menu.  Select this file 

# and click the Open button to read it into R.  You should see the completion message ":pbox> library loaded".  Once the

# library has been loaded, you can define probability distributions 

#       a = normal(5,1)

#       b = uniform(2,3)

# and  p-boxes 

#       c = meanvariance(0,2)

#       d = lognormal(interval(6,7), interval(1,2))

#       e = mmms(0,10,3,1)

# and perform mathematical operations on them, including the Frechet convolution such as

#       a  %+%  b

# or a traditional convolution assuming independence

#       a  %|+|%  b

# If you do not enclose the operator inside percent signs or vertical bars, the software tries to figure out how the

# arguments are related to one another. Expressions such as

#       a + b

#       a + log(a) * b

# autoselect the convolution to use.  If pba.r can’t tell what dependence the arguments have, it uses Frechet convolution. 

# Variables containing probability distributions or p-boxes are assumed to be independent of one another unless one

# formally depends on the other, which happens if one was created as a function of the other. Assigning a variable

# containing a probability distribution or a p-box to another variable makes the two variables perfectly dependent.  To 

# make an independent copy of the distribution or p-box, use the samedistribution function, e.g., c = samedistribution(a).

# By default, separately constructed distributions such as

#       a = normal(5,1)

#       b = uniform(2,3)

# will be assumed to be independent (so their convolution a+b will be a precise distribution).  You can acknowledge any

# dependencies between uncertain numbers by mentioning their



Two kinds of uncertainty



Euclid

Given a line in a plane, how many parallel lines 

can be drawn through a point not on the line?

For over twenty centuries, the answer was one



Relax one axiom

• Non-Euclidean geometries say zero or many

• At first, very controversial

• Mathematics richer and wider applications

• Used by Einstein in general relativity



Crossroads in uncertainty theory

• There is a kind of uncertainty that cannot be 

handled by traditional Laplacian probability

• Only one axiom changes

• Collision of different views about uncertainty

• Richer math, wider applications

• More reasonable and more reliable results

Econometrica

SUBJECTIVE EXPECTED UTILITY WITH 

INCOMPLETE PREFERENCES 

TSOGBADRAL 

This paper extends the subjective expected utility model 

of decision making under uncertainty to include 

incomplete beliefs and tastes. The main results are two 

axiomatizations

representations of preference relations under uncertainty. 

The paper also introduces new 

Knightian

with complete beliefs. 

KEYWORDS: Incomplete preferences, 

uncertainty, 

representations, incomplete beliefs, incomplete tastes. 

1. INTRODUCTION 

FACING A CHOICE BETWEEN ALTERNATIVES that 

are not fully understood or not readily comparable, 

decision makers may find themselves unable to ex

preferences for one alternative over another or to choose 

between alter

was recognized by von Neumann and Morgenstern, who 

stated that “[

more realistic

neither able to state which of two alternatives he prefers 

nor that they are equally desirable” (von Neumann and 



Two kinds of uncertainty

• Variability

• Aleatory uncertainty

• Type A uncertainty

• Stochasticity

• Randomness

• Chance

• Risk

• Incertitude

• Epistemic uncertainty

• Type B uncertainty

• Ambiguity

• Ignorance

• Imprecision

• True uncertainty

Monte Carlo methods Interval arithmetic and 



Variability = aleatory uncertainty

• Arises from natural stochasticity

• Variability arises from

– spatial variation

– temporal fluctuations

– manufacturing or genetic differences

• Not reducible by empirical effort



Incertitude = epistemic uncertainty

• Arises from incomplete knowledge

• Incertitude arises from

– limited sample size

– mensurational limits (‘measurement uncertainty’)

– use of surrogate data

• Reducible with empirical effort



Suppose

A is in [2, 4]

B is in [3, 5]

What can be said about the sum A+B?

4 6 8 10

The right answer for

risk analysis is [5,9]

Propagating incertitude



Must be treated differently

• Variability should be modeled as randomness 

with the methods of probability theory

• Incertitude should be modeled as ignorance 

with methods of interval or constraint analysis

• Probability bounding can do both at once



Probability bounds analysis



Bounding probability is an old idea

• Boole and de Morgan

• Chebyshev and Markov

• Borel and Fréchet

• Kolmogorov and Keynes

• Berger and Walley



Why bounding is a good idea

• Often sufficient to specify a decision 

• Possible even when estimates are impossible

• Usually easy to compute and simple to combine

• Rigorous, rather than an approximation

• Bounding works with even the crappiest data

(after N.C. Rowe 1988)



Rigorousness

• The computations can be guaranteed to 

enclose the true results (if the inputs do)

• “Automatically verified calculations”

• You can still be wrong, but the method won’t 

be the reason if you are



Closely related to other ideas

• Second-order probability

– PBA is easier to work with and more comprehensive

• Imprecise probabilities

– PBA is somewhat cruder, but a lot easier

• Robust Bayesian analysis

– PBA does convolutions rather than updating

Bounding

approaches

like PBA



Deterministic 

calculation

Probabilistic 

convolution

Interval 

analysis

Probability 

bounds analysis

-order 

probability

Deterministic 

calculation

Probabilistic 

convolution

Interval 

analysis

Probability 

bounds analysis

Second-order 

probability



Probability bounds

• Bridge between qualitative and quantitative

• When data are abundant, it works like 
probability theory

• When data are sparse, it yields both 
conservative and optimistic results

• Easy to set up, and cheap to implement 



What is a probability box (p-box)?
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P-box: mathematical definition

{F, F, m, v, F} where F, F ∈ 𝔻, m, v ∈ 𝕀, F ⊆ 𝔻, 

denoting a set of distributions F ∈ 𝔻 matching 

F (x) ≤ F(x) ≤ F(x),

x dF(x) ∈ m,

x2 dF(x) – ( x dF(x))2 ∈ v, and

F ∈ F

𝔻 = {D | D : ℝ → [0,1], D(x) ≤ D(y) whenever x < y, for all x, y ∈ ℝ}

𝕀 = {i | i = [i1, i2], i1 ≤ i2, i1, i2 ∈ ℝ }

Riemann–Stieltjes integrals don’t depend on the differentiability of F

∫
∞

−∞

∫
∞

−∞
∫

∞

−∞

− −

−

set of 

intervals

space of all 

distributions



Probability bounds analysis

• It’s not worst case analysis (distribution tails)

• Marries intervals with probability theory 

• Distinguishes variability and incertitude

• Solves many problems in risk analysis

– Input distributions unknown

– Imperfectly known correlation and dependency 

– Large measurement error, censoring, small sample sizes

– Model uncertainty



Calculations

• All standard mathematical operations
– Arithmetic (+, , ×, ÷, ^, min, max)

– Logical operations (and, or, not, if, etc.)

– Transformations (exp, ln, sin, tan, abs, sqrt, etc.)

– Backcalculation (deconvolutions, updating)

– Magnitude comparisons (<, ≤, >, ≥, )

– Other operations (envelope, mixture, etc.)

• Quicker than Monte Carlo

• Guaranteed to bound the answer

• Optimal solutions often easy to compute



Example: uncontrolled fire

F = A & B & C & D

Probability of ignition source

Probability of abundant fuel presence

Probability fire detection not timely

Probability of suppression system failure



Imperfect information

• Calculate A&B&C&D, with partial information:

– A’s distribution is known, but not its parameters

– B’s parameters known, but not its shape

– C has a small empirical data set

– D is known to be a precise distribution

• Bounds assuming independence?

• Without any assumption about dependence?



A = {lognormal, mean = [.05,.06],  variance = [.0001,.001])

B = {min = 0, max = 0.05, mode = 0.03}

C = {sample data = 0.2, 0.5, 0.6, 0.7, 0.75, 0.8}

D = uniform(0, 1)
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Resulting answers
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Summary statistics

Independent

Range [0, 0.011]

Median [0, 0.00113] 

Mean [0.00006, 0.00119]  

Variance [2.9109, 2.1106] 

Standard deviation [0.000054, 0.0014] 

No assumptions about dependence

Range [0, 0.05]

Median [0, 0.04] 

Mean [0, 0.04]

Variance [0, 0.00052]

Standard deviation [0, 0.023] 



How to use the results

When uncertainty makes no difference
(because results are so clear), bounding gives 

confidence in the reliability of the decision

When uncertainty prevents a decision

(i) use other criteria within probability bounds, or

(ii) use results to identify inputs to study better



Can uncertainty swamp the answer?

• Sure, if uncertainty is huge

• This should happen  (it’s not “unhelpful”)

• If you think the bounds are too wide, then 

put in whatever information is missing

• If there isn’t any such information…             

do you want the results to mislead people?



Using the pba.r library

A = lognormal( i(.05,.06), sqrt( i(.0001,.001)))

B = minmaxmode(0,0.05,.03)

C = CBbinomial(2,4)

D = uniform(0,1)

fi = A  %|&|%  B  %|&|% C  %|&|%  D

f  = A %&%  B  %&%  C  %&%  D 

red(f)

blue(fi)
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Duality

• Bounds on the probability at a value

Chance the value will be 15 or less is between 0 and 25%

• Bounds on the value at a probability

95th percentile is between 40 and 70
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Probability bounds arithmetic

P-box for random variable A P-box for random variable B

What are the bounds on the distribution of the sum of A+B?
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Cartesian product

A+B
independence

A[1,3]

p1 = 1/3

A[3,5]

p3 = 1/3

A[2,4]

p2 = 1/3

B[2,8]

q1 = 1/3

B[8,12]

q3 = 1/3

B[6,10]

q2 = 1/3

A+B[3,11]

prob=1/9

A+B[5,13]

prob=1/9

A+B[4,12]

prob=1/9

A+B[7,13]

prob=1/9

A+B[9,15]

prob=1/9

A+B[8,14]

prob=1/9

A+B[9,15]

prob=1/9

A+B[11,17]

prob=1/9

A+B[10,16]

prob=1/9



A+B under independence
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Where do inputs come from?



Where do input p-boxes come from?

• Prior modeling

– Uncertainty about dependence

– Robust Bayes analysis

• Constraint information

– Summary publications lacking original data

• Sparse or imprecise data

– Shallow likelihood functions to maximize

– Measurement uncertainty, censoring, missing data

– Inferential (sampling) uncertainty



Robust Bayes can make a p-box

class of priors, class of likelihoods  class of posteriors

-5 0 5 10 15 20

PosteriorsPosterior p-box

Likelihoods
Priors



Constraint propagation
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Maximum entropy’s problem

• Depends on the choice of scale

• A solution in terms of degradation rate is 
incompatible with one based on half life 
even though the information is equivalent

• P-boxes are the same whichever scale is used

Warner North interprets Ed Jaynes as saying that “two states of 

information that are judged to be equivalent should lead to the same 

probability assignments”.  Maxent doesn’t do this!  But PBA does.



Sparse data yield shallow likelihoods

L





Treelining likelihood makes a p-box

L



The p-box encloses all distributions whose 

parameters  are above some threshold 

likelihood (not merely maximally likely).



Sources of incertitude in data

• Periodic observations
When did the fish in my aquarium die during the night?

• Plus-or-minus measurement uncertainties
Coarse measurements, measurements from digital readouts

• Non-detects and data censoring
Chemical detection limits, studies prematurely terminated

• Privacy requirements
Epidemiological or medical information, census data

• Theoretical constraints
Concentrations, solubilities, probabilities, survival rates

• Bounding studies 
Presumed or hypothetical limits in what-if calculations



Imprecise sample data

Skinny data Puffy data

[1.00, 2.00] [3.5, 6.4]

[2.68, 2.98] [6.9, 8.8]

[7.52, 7.67] [6.1, 8.4]

[7.73, 8.35] [2.8, 6.7]

[9.44, 9.99] [3.5, 9.7]

[3.66, 4.58] [6.5, 9.9]

[0.15, 3.8]

[4.5, 4.9]

[7.1, 7.9]

a.1=[1.00, 2.00]

a.2=[2.68, 2.98]

a.3=[7.52, 7.67]

a.4=[7.73, 8.35]

a.5=[9.44, 9.99]

a.6=[3.66, 4.58]

; b.7=[0.15, 3.8]

; b.8=[4.5, 4.9]

; b.9=[7.1, 7.9]

for i = 1 to 6 do u.i = U(left(a.i), right(a.i))

s = v = 0

for i = 1 to 6 do s = s + mean(u.i)

s/6

1/

ma=mix(1,u.1, 1,u.2, 1,u.3, 1,u.4, 1,u.5, 1,u.6) 

na = N(s/6,sqrt(8.95899))
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Empirical distribution of intervals

• Each side is cumulation of respective endpoints

• Represents both uncertainty and variability
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Uncertainty about the EDF
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Fitted to normals
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Distributional uncertainty

• Can we trust the raw data or any distribution 

fitted to them?

• Should account for sampling uncertainty about 

a probability distribution given sampled values

• Kolmogorov-Smirnov confidence procedure 

– 95% (or whatever) confidence for distribution

– Assumes continuous distribution

– Random samples, which come from random inputs



Distributional confidence limits
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Confidence band about a p-box
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KS generalizes well

• Works with arbitrary input distribution shapes

• Can handle incertitude too

• Generalizes to multivariate outputs

• Conclusion is distribution-free

• Assuming output shape could tighten bounds 



Distributional confidence limits
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(Chen and Iles; Basu) Distributional confidence bands described 

for only a few shapes

95% confidence band 

on normal distribution

N = 30



Single-sample confidence band

• Rodríguez described confidence intervals for 

mean and standard deviation assuming 

normality from only one random sample

• Combine them to get confidence band
onepointconfidenceband.normal = function(x, c=0.95) {

stopifnot(length(x)==1)

tm = c(4.83952, 9.678851, 48.39413)

ts = c(8,17,70)

k = which(c==c(0.9, 0.95, 0.99))

normal(x+tm[[k]]*abs(x)*interval(-1,1),interval(0,ts[[k]]*abs(x)))

}

SKIP
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Confidence bands aren’t rigorous

• Not compatible with interval arithmetic

– You can’t intersect or compute with them

– Not rigorous…only statistical

• Could artfully use the Fréchet inequality

– Combining two bands at 95% yields a 90% band

– Two 97.5%  95%, three 95%  85%, three 98.35%  95%

• Could assume the confidence band is rigorous

– Assumption often used (e.g., EPA uses a UCL as the EPC)



Every p-box represents assumptions

• Constraint p-boxes assumed you knew those 

parameters

• Nothing intrinsically different about the 

assumption that converts a confidence band 

to a p-box

– You’re assuming, given the data, that the 

distribution is entirely inside the bounds



Confidence boxes

• Structures that let you infer confidence intervals 

(at any confidence level) for a parameter

• Extend confidence distributions (like Student’s t)

• Different from confidence bands

• Can be propagated as ordinary probability bounds



Example:  binomial rate

• Probability, given k successes out of n trials

• Like robust Bayes but no assumption of prior

0 0.2 0.4 0.6 0.8 1
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0.4
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0.8

1



()100% confidence interval for p

Example

k = 2

n = 10



Uncertainties expressible with p-boxes

• Sampling uncertainty (from small N)

– Distributional confidence bands, confidence boxes

• Measurement incertitude

– Plus-minus ranges, censoring intervals

• Uncertainty about distribution shape

– Constraints (non-parametric p-boxes)

• Surrogacy uncertainty (have X but want Y)

– Modeling

Demographic uncertainty (integrality of data in discrete data) 



Modeling for surrogacy

• Sometimes you correct the best estimate

– Subtract the weight of the dish when they 

charge for salad in the cafeteria (+)

– Sulfur hexafluoride is worth so much CO2 ()

• If you’re not sure exactly how, then you 

should widen the uncertainty



Stdv

11.55

0.0001443

750

0.05

100

0.001415

3

Example: Lobascio’s travel time

 
iK

LKocfocBDn
T






Parameter

L     source-receptor distance

i      hydraulic gradient

K     hydraulic conductivity

n      effective soil porosity

BD   soil bulk density

foc   fraction organic carbon

Koc organic partition coefficient

Min

80

0.0003

300

0.2

1500

0.0001

5

Max

120

0.0008

3000

0.35

1750

0.005

20

Mean

100

0.00055

1000

0.25

1650

0.00255

10

Shape

uniform

uniform

lognormal

lognormal

lognormal

uniform

normal

Units

m

m/m

m/yr

-

kg/m3

-

m3/kg



pba.r

L   = mmms(80,120,100,11.55) # source-receptor distance

i = mmms(0.0003,0.0008,0.00055,0.0001443) # hydraulic gradient

K   = mmms(300,3000,1000,750) # hydraulic conductivity

n   = mmms(0.2,0.35,0.25,0.05)  # effective soil porosity

BD  = mmms(1500,1750,1650,100) # soil bulk density

foc = mmms(0.0001,0.005,0.00255,0.001415)   # fraction organic carbon

Koc = mmms(5,20,10,3) # organic partition coefficient 

up = 100000 # detail 

Tind = (n + BD * foc * Koc) * L / (K * i) 

Tind = pmin(Tind, up)

SKIP

N.B. The implementation of mmms
in pba.r is incomplete so, while its 
results are bounds, they are not 
best possible bounds



Inputs as mmms p-boxes
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Output p-box
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Detail of left tail
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1

It’s possible the contamination reaches the well in 32 years, 

but the chance that it does is very small. The chance it gets 

there in 90 years is surely less than 10%. And it might be nil.



Example: mercury in wild mink

Location: Bayou d’Inde, Louisiana

Receptor: generic piscivorous small mammal 

Contaminant: mercury

Exposure route: diet (fish and invertebrates)

Based loosely on the assessment described in “Appendix I2: Assessment of Risks to Piscivorus 

[sic] Mammals in the Calcasieu Estuary”, Calcasieu Estuary Remedial Investigation/Feasibility 

Study (RI/FS): Baseline Ecological Risk Assessment (BERA), prepared October 2002 for the U.S. 

Environmental Protection Agency. See http://www.epa.gov/earth1r6/6sf/pdffiles/appendixi2.pdf.



Total daily intake from diet

FMR normalized free metabolic rate of the mammal
AEfish assimilation efficiency of dietary fish in the mammal
AEinverts assimilation efficiency of dietary invertebrates in the mammal
GEfish gross energy of fish tissue
GEinverts gross energy of invertebrate tissue
Cfish mercury concentration in fish tissue
Cinverts mercury concentration in invertebrate tissue
Pfish proportion of fish in the mammal’s diet
Pinverts proportion of invertebrates in the mammal’s diet

























invertsinverts

invertsinverts

fishfish

fishfish

||

||||
||

GEAE

PC

GEAE

PC
FMRTDI



What is known about the variables

FMR, free metabolic rate

Studied in terms of mammal body mass; FMR = a BW b, regression intervals a, b

BW, body mass of the mammal

Empirically well studied; Normal with highly precise mean and dispersion

AEfish, AEinverts, assimilation efficiencies for different diet components

A few field measurements; Mean and upper and lower values

GEfish, GEinverts, gross energy of fish and invertebrate tissues

Many measurements; Normal distribution with precise mean and dispersion

Cfish, Cinverts, mercury concentration in fish or invertebrate tissue

Dictated by EPA policy; Range between sample mean and 95% UCL

Pfish, Pinverts, proportions of fish and invertebrates in the mammal’s diet

Assumed by analyst; Constant



Input assignments

BW = normal( 608 gram, 66.9 gram)   

FMR = [0.4120.058]*mag(BW)^[0.8620.026]* 1 Kcal over kg day 

AEfish = minmaxmean(0.77, 0.98, 0.91)   

AEinverts = minmaxmean(0.72, 0.96, 0.87)   

GEfish = normal(1200 Kcal per kg, 240 Kcal per kg)   

GEinverts = normal(1050 Kcal per kg, 225 Kcal per kg)   

Cfish = [0.1,0.3] mg per kg  

Cinverts = [0.02, 0.06] mg per kg   

Pfish = 0.9  

Pinverts = 0.1  



pba.r

BW = normal( 608, 66.9)  

pmi = function(m, pm) pbox(interval(m-pm, m+pm))

FMR = pmi(0.412,0.058) * BW ^ pmi(0.862,0.026) 

AEfish = minmaxmean(0.77, 0.98, 0.91)   

AEinverts = minmaxmean(0.72, 0.96, 0.87)   

GEfish = normal(1200, 240)   

GEinverts = normal(1050, 225)   

Cfish = interval(0.1,0.3)

Cinverts = interval(0.02, 0.06)

Pfish = 0.9  

Pinverts = 0.1  

TDI = FMR * (Cfish%*%Pfish%/%(AEfish*GEfish) %+% Cinverts%*% 
Pinverts%/%(AEinverts*GEinverts))

SKIP
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Input p-boxes
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Results

0 0.1 0.2

0

1

TDI, mg kg1 day1

E
x
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k mean    [ 0.0061, 0.042]

median    [ 0.0058, 0.041]

95th percentile    [ 0.0085, 0.063]

standard deviation [ 0, 0.025]



2MC simulations may not fill p-boxes

• 2nd order Monte Carlo is not comprehensive

– Inadequate model of ignorance

– Dependence among parameters of a distribution

– Uncertainty about dependence (Fréchet)

– Non-denumerable model uncertainty

• Probability bounds analysis is not optimal

– Independence between parameters of a distribution

– Ternary (and higher) Fréchet operations

SKIP



Probability bounds analysis

• Combines interval and probability methods

• Shows when uncertainty is (or isn’t) important

• Won’t underestimate risks of extremes, yet 
isn’t hyperconservative like worst case 

• Solves many risk analysis problems
Input distributions unknown

Large measurement error, censored data, and small samples

Correlation and dependency ignored

Model uncertainty



Advantages

• Fewer assumptions

– Not just different assumptions, fewer of them

– Distribution-free methods

• Rigorous results

– Built-in quality assurance

– Automatically verified calculation



What p-boxes can’t do

• Show what’s most likely within a p-box

• Express second-order information

• Get best-possible bounds on non-tail risks

• Get best-possible bounds for any data set

– When dependencies are intricate

– When information about modes are availabe



Don’t know the input distributions

• Don’t have to specify the distributions

• Shouldn’t use a distribution without evidence

• Maximum entropy criterion erases uncertainty 

rather than propagates it

• Sensitivity analysis is very hard since it’s an 

infinite-dimensional problem

• P-boxes easy, but should use all information



Probability bounds analysis in pba.r

• Output

– <enter variable name>, plot, lines, show, summary

• Characterize

– mean, sd, var, median, quantile, fivenum, left, right, 

prob, cut, percentile, iqr, random, range

• Compute

– exp, log, sqrt, abs, round, trunc, ceiling, floor, sign, 

sin, cos, tan, asin, acos, atan, atan2, reciprocate, 

negate, +, -, *, /, pmin, pmax, ^, and, or, not, 

mixture, smin, smax, complement



Probability bounds analysis in pba.r

• Construct

– <named distribution>

– histogram

– quantiles

– pointlist

– MM <tab> <tab>

– ME <tab> <tab>

– ML <tab> <tab>

– CB <tab> <tab>

– NV <tab> <tab>

Supported named distributions

bernoulli, beta (B), binomial (Bin), cauchy, chi, 

chisquared, delta, dirac, discreteuniform, exponential, 

exponentialpower, extremevalue, F, f, fishersnedecor, 

fishertippett, fisk, frechet, gamma, gaussian, geometric, 

generalizedextremevalue (GEV), generalizedpareto, 

gumbel, histogram, inversegamma, laplace, logistic, 

loglogistic, lognormal (L), logtriangular, loguniform, 

negativebinomial, normal (N), pareto, pascal, 

powerfunction, poisson, quantiles, rayleigh, reciprocal, 

shiftedloglogistic, skewnormal (SN), student, 

trapezoidal, triangular (T), uniform (U), weibull



Computing with confidence



Many ways to fit distributions to data

• Maximum entropy

• Maximum likelihood

• Bayesian inference

• Method of matching moments

• Goodness of fit (KS, AD, 2, etc.)

• PERT

• Regression techniques

• Empirical distribution functions

…in fact there are even more methods…

still most 
common



Little coherence in practice

• Disparate methods used across risk analysis

• Common to mix and match distributions with 

different justifications

• Analyses are thus based on no clear criterion or 

standard of performance

• Is this okay?



Frequentist confidence intervals

• Favored by many engineers 

• Guarantees statistical performance over time

• But difficult to employ consistently in analyses 

• Not clear how to propagate them through 

mathematical calculations



Bayesian approaches

• Permit mathematical calculations

• But lack guarantees ensuring long-run 

statistical performance

• Many engineers are reluctant to use 

Bayesian methods



Confidence distributions

• Not widely used in statistics

• Introduced by Cox in the 1950s

• Closely related to well known ideas

– Student’s t-distribution

– Bootstrap distributions



Confidence distributions

• Distributional estimators of (fixed) parameters

• Give confidence interval at any confidence level

Parameter value
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()100% confidence interval



Confidence interval

• A confidence interval with coverage 

In replicate problems, a proportion  of computed 

confidence intervals will enclose the true value 

• Using methods to compute confidence 

intervals thus ensures statistical performance



Confidence distributions

• Have the shape of a distribution

• But correspond to no random variables

• Not supposed to compute with them

• Don’t always exist (e.g., for the binomial rate)



Confidence structures (c-boxes)

• Generalization of confidence distributions

• Reflect inferential uncertainty about parameter

• Known for many cases

– binomial rate and other discrete parameters

– normals, and many other problems

– non-parametric case

• Still have performance/confidence interpretation



50% c.i.

0

1



Confidence interpretation



Estimators

• Point estimates (e.g., sample mean)

• Interval estimates (e.g., confidence intervals)

• Distributional estimates (Bayesian posteriors)

• P-box estimates (e.g., c-boxes)



Binomial rate p for k of n trials
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Data

k = 2

n = 10

p ~ env(beta(k, nk+1), beta(k+1, nk))

If 1 = , result is identical to classical ClopperPearson interval



How does the Bayes analysis compare?

• No such thing as the Bayes analysis

• There are always many possible analyses

– Different priors, which yield different answers

– When data sets are small, the differences are big

• For binomial rate there are four or five priors 

Bayesians have not been able to chose among



k=2; n=10
par(mfrow=c(1,1))
# plots of the prior densities
steps = 1000
x = 0:steps/steps

# priors
plot(NULL, xlim=c(0,1),ylim=c(0,2),xlab='p',ylab='Probability density') 
y=1.6186*x^x*(1
y=dbeta(x,0.5,0.5); sum(y[is.finite(y)]); lines(x,y,lwd=4,col='blue') # Jeffreys, Perks, Box&Tiao, Bernardo
y=dbeta(x,2,2); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='gray') # Walley no tails
y=dbeta(x,1,1); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='black')  # Bayes
y=dbeta(x,0.00005,0.00005); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='darkgreen'); lines(c(1,1),c(0.02,2.1), lwd=4,col='dar
Jaynes, Villegas
#y=x^(

# posterior density distributions
plot(NULL, xlim=c(0,1),ylim=c(0,4),xlab='p',ylab='Probability density') 
y=dbeta(x,0.5+k,0.5+n
y=dbeta(x,2+k,2+n
y=dbeta(x,1+k,1+n
y=dbeta(x,k+0.00005,n
# Zellner
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The c-box includes all 

posteriors based on the 

traditional priors
(but not the posterior from the Walley prior)
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Example: normal mean

Data
8

5.5

1.3

3.5

0.8

2.8

1.8

2.2

3.5

5.3 
0 10

0

1

 ~ x + s  Tn1 / n
_ _

Has the 

performance 

interpretation

x=c(8,5.5,

n=length(x)

S = student(n

plot(NULL, 

m 

lines(m

Student’s t

distribution



Example: normal mean

Data
[8,11]

[5.5,6.9]

[1.3,0.3]

[3.5,7.5]

[0.8,1]

[2.8,4.2]

[1.8,5.2]

[2.2,5.2]

[3.5,5.7]

[5.3,6.1] 
0 10

0

1

 ~ x + s  Tn1 / n
_ _

Has the 

performance

interpretation

x1=c(8,5.5,

x2=c(11,6.9,0.3,7.5,1,4.2,5.2,5.2,5.7,6.1)

n=length(x1)

S = student(n

plot(NULL, 

for (I in 1:1000) {



Deriving c-boxes

• Have to be derived for each special case

• Traditional approaches based on pivots

• Many solutions have been worked out

binomial(p, n), given n normal(, )

binomial(p, n), given p lognormal(, )

binomial(p, n) gamma(a, b)

Poisson(p) exponential()
. .. .. .



Example: non-parametric problem
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X ~ [(1+C(x))/(1+n), C(x)/(1+n)]

where  C(x)  =  #(Xi ≤ x)

No assumption 

about the shape 

of the distribution 



Captured uncertainties 

• Uncertainty about distribution shape

• Sampling uncertainty (from small n)

• Measurement incertitude (, censoring)

• Demographic stochsticity (integrality of data) 



Propagated as probability boxes

• C-boxes can be combined in mathematical 

expressions using the p-box technology

• Results also have performance interpretations

• C-boxes can also make predictive p-boxes

– Analogous to frequentist prediction distributions 

– Or Bayesian posterior predictive distributions



Prediction structures

• C-boxes can model the uncertainty about the 

underlying distribution that generated the data

• Stochastic mixture of p-boxes from interval 

parameters specified by slices from the c-box

• This is a composition of the c-box through the 

probability model



Bernoulli( p )

Example:  Bernoulli distribution

0
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u

Each interval slice defines a p-box for the underlying 

distribution (rather than a precise distribution)

0 1 0 1



Average all such p-boxes
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Predictive p-boxes for observables

Bernoulli trials bi ~ B(p), i=1,…,n

bn+1~ Bernoulli([k, k+1]/(n+1)), k = ibi

Random binomial sample k ~ binomial(p, n)

k2~ [BB(k, nN-k+1, N), BB(k+1, nNk, N)]

Random normal samples Xi ~ N(, ), i=1,…,n

Xn+1~mean(Xi) + stdev(Xi) ·sqrt(1+1/n)·T(n1) 

BB denotes beta-binomial;   T denotes Student’s t
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Example: Binomial distribution

The edges of the p-box are beta-binomial distributions; 

for the normal case, they are scaled t-distributions

Just as in conventional Bayesian and frequentist statistics, 

the prediction(-ive) structure does not usually have the 

shape of the hypothetical sampling distribution



Prediction structures are p-boxes

• Results also have the confidence interpretation, 

but the intervals are prediction intervals rather 

than confidence intervals

• Prediction intervals enclose a specified 

percentage of observable values, on average

• It is also possible to derive analogous tolerance 

structures, which encode tolerance intervals 

(X% sure to enclose Y% of the population)
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25% fail

Plan B
39 out of 60 failed

Plan C
17 out of 20 failed

Computing with c-boxes

What if we used all three plans independently?



Conjunction (AND)

a = balchbox(100,25)
b = balchbox(60,39)
c = balchbox(20,17)

ABC = a %&% b %&% c

abc = a %|&|% b %|&|% c
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C-boxes are fully Bayesian

• Under robust Bayes approach, c-boxes can be 

thought of as Bayesian posteriors 

– Don’t require specification of a unique prior

– Have added feature of statistical performance 

– Imply posterior predictive distributions

– Compatible with specifying a robust or precise 

prior when that’s desirable 

Bayesian sensitivity analysis



C-boxes are fully frequentist too

• Frequentists like confidence intervals but 

cannot use them in subsequent calculations

• Bayesians can compute with posteriors, but 

they don’t guarantee statistical performance

• C-boxes take the best from both worlds



Summary for c-boxes

• Confidence boxes carry inferential uncertainties 

through mathematical operations 

• Give confidence intervals on results at any  level

• Defined by performance, so not unique

– Just as confidence intervals are not unique

– May create some flexibility

• Don’t seem to be overly conservative

– Elaborate simulation studies have so far not found this



Conclusions

• C-boxes characterize risk analysis inputs given 

limited sample or constraint information

• Reasonable answers when data and tenable 

assumptions don’t justify particular distributions

• C-boxes don’t optimize; they perform

• C-boxes could serve as the lexicon in a language 

of risk analysis



More information

https://sites.google.com/site/confidenceboxes/

• Papers

• Slide presentations

• Free software

Google “confidence boxes” [plural…singular is a 

blog on teenage self-esteem & self-empowerment]



Little data, or none at all



Dramatic technocratic failures

• Shuttle risk estimated at 1/10,000 per flight,   

it was actually 1 per 70 flights

• 100-year flood risks underestimated and 

uncertainties not communicated

• Grossly understating risks in the financial 

industry precipitated the 2008 recession

• Failure cascades in electricity distribution 

systems are more common than they are 

forecasted to be (RAWG 2005; USCPSOTF 2006)

1998 National Weather Service, US Army Corps



Dramatic technocratic failures

• Kansai International Airport

• Diablo Canyon Nuclear Power Plant 

• Vioxx withdrawal missed decision context

• Fukushima non-redundancy

• Mars Climate Orbiter units 

• Google Flu

• Ariane 5 integer overflow

• Minneapolis bridge collapse



These are not noble failures

• They are not simply the unfortunate but 

expected extreme tail events

• They occur more often than our risk estimates 

predict

• Analysts are doing risk estimations wrong

• Managers never see the problems coming



Engineers cannot always get data

• New systems may have no performance history 

– spacecraft of new design or in a new environment

– biological control strategies using novel genetic 

constructs that have never existed before

• Two ways to estimate probabilities without data

– disaggregation into parts whose probabilities are 

easier to estimate (i.e., breaking it into subproblems)

– expert elicitation (i.e., guessing)



Rare event probabilities

• Hardly ever any actual data

• Sometimes we have experts

• But how should we model bald assertions:

– “1 in 10 million”

– “about 1 in 1000”

– “never been seen in 100 years”



In my experience

People using expert elicitation often take the 

pronouncements made by their informants 

exactly as they are specified

– Sometimes even as point values

(If your experience is different, I’d like to chat)



Is there no uncertainty?

• What is the uncertainty in estimates like 

– “1 in 107”, 

– “about 1 in 1000”, or 

– “never been seen in over 100 years of observation”?

• How should this uncertainty be captured and 

projected in computations?



Rare events

• Often the driving concern in analyses

• Typically big consequences

• Hardly ever characterized by good data

• Perhaps never seen, or seen only once



Random sample data

• ML says p is zero for never-seen events

– Nobody believes this is a reasonable estimate

• Bayesian estimator is more reasonable…

maximum 
likelihood
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Random sample data

• ML says p is zero for never-seen events

– Nobody believes this is a reasonable estimate

• The Bayesian estimator is many things

– ‘Reasonable’ only in that it’s whatever you want

• Modern estimators

– Imprecise beta (Dirichlet) models

– Confidence structures



Confidence structure (c-box)

• P-box-shaped estimator of a (fixed) parameter

• Gives confidence interval at any confidence level

• Can be propagated just like p-boxes

• Allow us to compute with confidence



Probability of rare event

• Inference about probability from binary data, 

k successes out of n trials

• Identical to Walley’s Imprecise Beta Model 

with s=1, but needs no prior

p ~ [beta(k, nk+1), beta(k+1, nk)]
Notation

extends the 

use of tilda
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Zero out of 10k trials
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One out of 10k trials
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Relay
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Timer
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Relay
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reservoir

Pressure tank T Outlet

valve

Switch

S1

Vesely’s tank

What’s the 

chance the

tank ruptures 

under pumping?

Vesely et al. 1981



E1

T

K2

E2

E3

S

E4

S1

E5

K1

or and

or

or

or

R

Fault tree

E1 = T  (K2  (S & (S1  (K1  R))))
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Try it in pba.r

T = CBbinomial(0, 2000)

K2 = CBbinomial(3, 500)
.
.
.

E1 = T %|% (K2 %|% (S %&% (S1 %|% (K1 %|% R))))



Overconfidence

• People, including scientists and engineers, 

systematically understate their uncertainty 

– 90% confidence intervals ought to enclose the true 

value 90% of the time, but do only about 40% of time

– Overconfidence “has been found to be almost 

universal in all measurements of physical quantities” 

• Likely to be at least as important in expert 

elicitation when nothing is being measured



Shlyakhter discounting

• Alex Shlyakhter (1994) suggested this ‘expert’ 

overconfidence is so pervasive in science we 

should automatically inflate all uncertainty 

statements to account for it

• 95% confidence intervals should be wider by a 

factor of 3.8/1.96 ≈ 2 

The means are unchanged



We need an elicitation penalty

• Expert opinions aren’t like random data

• Their uncertainty should be inflated

• The penalty size should be derived empirically 

from validation studies of prior elicitations

Who’s doing such studies?



Here’s a placeholder for the penalty

• The numbers in “1 in 300” are not counts but 

estimates with imprecision implied by sigdigs

“1 in 300” = [ 0.5, 1.5] / [ 250, 350]

= [ 0.5 / 350, 1.5 / 250 ]

• The envelope of all corresponding c-boxes 



Significant-digit intervals 

• Significant digits imply an interval ( half the 

magnitude of the last significant decimal place)

x s(x)

0 [0, 0.5]

1 [ 0.5, 1.5]

9 [ 8.5, 9.5]

10 [ 5, 15]

300 [ 250, 350]

8150  [ 8145, 8155]

1107 [ 5106, 1.5107]



Examples for elicitations “k in n”

Gray c-boxes B(k, n), and black c-box envelopes E(k, n) = B(s(k), s(n)) 



More uncertainty for round numbers

• Doubles (or more than doubles) the uncertainty

• Why more than doubles?

s(9) = [8.5, 9.5] unit width

s(10) = [5, 15] width of 10

• Presumes greater uncertainty when round 

numbers are used to characterize a probability



Expert 

elicitation

Maximum 

likelihood

Bayesian 

inference

PERT
Method of 

moments

Maximum 

entropy

Estimation

Estimation

“the great frontier of 

making things up”

A two-front assault



C-boxes

• Don’t optimize anything; they perform

• Characterize inputs from limited or even no data

• With an uncertainty penalty, seems to capture 

some uncertainty in experts’ bald assertions like

“1 in 1000”

“1 in ten million”

“never been seen in 100 years”



C-boxes are compatible p-boxes

• P-boxes have a performance interpretation too

• If constraints are known that specify a rigorous 

p-box, then it encodes prediction intervals

• So our performance interpretation applies for

– Parametric problems

– Nonparametric problems

– No data problems

– Constraint problems

Appears to provide a unification of 
asymptotically large sample 
estimates, small sample estimates, 
expert elicitation, and constraint 
analysis, as well as a union of 
Bayesian and frequentist criteria.



Topics

• Why bounding’s not enough  15

• Dependence  35

• Sensitivity analysis  30

• Validation  30

• Backcalculation 25

• Spacecraft design at NASA  20

• Statistics for interval data  35

• Neuroscience of uncertainty  40

• Model uncertainty  20



Imprecise probabilities



Probability of an event

• Imagine a gamble that pays one dollar if an event 
occurs (but nothing otherwise)
– How much would you pay to buy this gamble?

– How much would you be willing to sell it for?

• Probability theory requires the same price for both
– By asserting the probability of the event, you agree to 

buy any such gamble offered for this amount or less, 
and to sell the same gamble for any amount equal to or 
more than this ‘fair’ price…and to do so for every event!

• IP just says, sometimes, your highest buying price 
might be smaller than your lowest selling price



Why is yet another method needed?

• Some statements of uncertainty can’t be 

expressed with p-boxes or interval probability

• Need to express uncertainty of all kinds

• Sometimes mere bounding isn’t good enough



What bounding probability can’t do

• Represent comparative probability judgments, e.g., 

event A is at least as likely as event B

• Give unique expectations needed for making decisions

• Give unique conditional probabilities needed for 

making inferences

• Maintain best possible bounds through updating

(Walley 2000)



Imprecise probabilities

• Generic term for any theory that doesn’t 

assume a unique underlying probability

• Often expressed in terms of closed, convex 

sets of probability distributions (not the same 

as a p-box)

• General case v. special case

set v. interval

imprecise probabilities v. p-boxes, probability intervals



Sets of distribution functions

• Consider the set of all Bernoulli distributions 

(which are discrete with mass at only 0 and 1)

0 1 0 10 1 0 10 1

p = 0 p = 1p = ½p = 1/3 p = 2/3

• Clearly, there’s a one-dimensional family of 

such distributions, parameterized by how the 

mass is distributed between the two points



Space of distributions

• This one-dimensional family constitutes a 

space of distributions in which each point 

represents a distribution

0 1p



Three-dimensional case

a

b

c

• When the distributions have 3 point masses, 

the space becomes two-dimensional and has 

a triangular shape

• The points on this 

surface are those 

whose coordinates

add to one (1,0,0)

(0,0,1)

(0,1,0)



Simplex

• For discrete distributions with n masses, the 

space, called a simplex, has (n1)-dimensions

• One degree of freedom is lost to the constraint 

that probabilities sum to one

• For the continuous case, the space becomes 

infinite-dimensional, or you could be content 

to use discrete approximations
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Walley’s (2000) football game

• 3 possibilities for our team:  win, draw, loss

• Suppose we have qualitative judgments:

‘Not win’ is at least as probable as win

Win is at least as probable as draw

Draw is at least as probable as loss

• These constrain the probability distribution P

P(win)  ½

P(win)  P(draw)

P(draw)  P(loss)



P(win)=1P(draw)=1

P(loss)=1

P(win)  ½

P(win)  P(draw)

P(draw)  P(loss)



P(win)=1P(draw)=1

P(loss)=1



So what?

• The closed, convex set of probability 
distributions (the red triangular region) 
expresses the uncertainty

• This set of distributions is smaller than the set 
implied by bounds on the three probabilities 
(the green area enclosing the triangle)

• This difference can affect expectations of 
functions that depend on the events, and 
conditional probabilities



Credal set

• Knowledge and judgments can be used to 

define a set of possible probability measures

• All distributions within bounds are possible

• Only distributions having a given shape

• Probability of an event is within some interval

• Event A is at least as probable as event B

• Nothing is known about the probability of C

• Computing with credal sets usually requires 

mathematical programming
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Correlation and dependency



Dependence

• Most variables assumed independent

• But some variables clearly aren’t

– Density and porosity

– Rainfall and temperature 

– Body size and skin surface area



Dependence can be complex

X

Y



Dependence for fixed correlation

4 6 8 10 12 14 16 18

4

6

8

10

12

4 6 8 10 12 14 16 18

4

6

8

10

12

4 6 8 10 12 14 16 18

4

6

8

10

12

4 6 8 10 12 14 16 18

4

6

8

10

12

4 6 8 10 12 14 16 18

4

6

8

10

12

4 6 8 10 12 14 16 18

4

6

8

10

12

Every scattergram has (Pearson) correlation 0.816



Independence ()

Perfect dependence (M)

Opposite dependence (W)



Dependencies

• Independence  (knowing X~F tells nothing about Y~G)

• Perfect dependence   Y = G1(F(X))

• Opposite dependence   Y = G1(1F(X))

• Complete dependence  Y = z(X)

• Linearly correlated  Y = mX + b + 

• Ranks linearly correlated  Y = G1(mF(X) + b + )

• Functional modeling  Y = z(X) + 

• Complex dependence  (anything else!)

Uncorrelatedness is not independence



X

Y

Scattergrams with zero correlation
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Can’t always assume independence

• If you know the mechanism of dependence, 
you can model it

• Else, have to reproduce the statistical patterns

• If dependence unknown, can’t use either way

• Even small correlations can have a big effect 
on convolutions



What about other dependencies?

• Independent

• Perfectly positive (comonotonic) 

• Opposite (countermonotonic)

• Positively or negatively associated

• Specified correlation coefficient

• Nonlinear dependence (copula)

• Unknown dependence



Perfect dependence

A+B
perfect positive

A[1,3]

p1 = 1/3

A[3,5]

p3 = 1/3

A[2,4]

p2 = 1/3

B[2,8]

q1 = 1/3

B[8,12]

q3 = 1/3

B[6,10]

q2 = 1/3

A+B[3,11]

prob=1/3

A+B[5,13]

prob=0

A+B[4,12]

prob=0

A+B[7,13]

prob=0

A+B[9,15]

prob=0

A+B[8,14]

prob=1/3

A+B[9,15]

prob=0

A+B[11,17]

prob=1/3

A+B[10,16]

prob=0



Opposite dependence

A+B
opposite positive

A[1,3]

p1 = 1/3

A[3,5]

p3 = 1/3

A[2,4]

p2 = 1/3

B[2,8]

q1 = 1/3

B[8,12]

q3 = 1/3

B[6,10]

q2 = 1/3

A+B[3,11]

prob=0

A+B[5,13]

prob=1/3

A+B[4,12]

prob=0

A+B[7,13]

prob=0

A+B[9,15]

prob=0

A+B[8,14]

prob=1/3

A+B[9,15]

prob= 1/3

A+B[11,17]

prob=0

A+B[10,16]

prob=0



Perfect and opposite dependencies
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Uncertainty about dependence

• Sensitivity analyses usually used

– Vary correlation coefficient between 1 and +1

• But this underestimates the true uncertainty

– Example: suppose X, Y ~ uniform(0,24) but we don’t 

know the dependence between X and Y
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Fréchet inequalities

They make no assumption about dependence (Fréchet 1935) 

max(0, P(A)+P(B)–1)  P(A & B)  min(P(A), P(B))

max(P(A), P(B))  P(A  B)  min(1, P(A)+P(B))



Fréchet case (no assumption)

A+B
Fréchet case

A[1,3]

p1 = 1/3

A[3,5]

p3 = 1/3

A[2,4]

p2 = 1/3

B[2,8]

q1 = 1/3

B[8,12]

q3 = 1/3

B[6,10]

q2 = 1/3

A+B[3,11]

prob=[0,1/3]

A+B[5,13]

prob=[0,1/3]

A+B[4,12]

prob=[0,1/3]

A+B[7,13]

prob=[0,1/3]

A+B[9,15]

prob=[0,1/3]

A+B[8,14]

prob=[0,1/3]

A+B[9,15]

prob=[0,1/3]

A+B[11,17]

prob=[0,1/3]

A+B[10,16]

prob=[0,1/3]



Naïve Fréchet case
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Fréchet can be improved

• Interval estimates of probabilities don’t 

reflect the fact that the sum must equal one

• Resulting p-box is too fat

• Linear programming needed to get the 

optimal answer using this approach

• Frank, Nelsen and Sklar (1987) gave a way to 

compute the optimal answer directly



Frank, Nelsen and Sklar (1987)
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Suppose X ~ F and Y ~ G.  

If X and Y are independent, then the distribution of X+Y is

In any case, and irrespective of their dependence, this 

distribution is bounded by

This formula can be generalized to work with bounds on F and G.



Best possible bounds
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Fréchet dependence bounds

• Cannot be obtained by sensitivity studies

• Guaranteed to enclose results no matter 

what correlation or dependence there may 

be between the variables

• Best possible (couldn’t be any tighter 

without saying more about the dependence)

• Can be combined with independence 

assumptions between other variables



Between independence and Fréchet

• Some information may be available by which the 
p-boxes could be tightened over the Fréchet case 
without specifying the dependence perfectly, e.g.,

• Dependence is positive (PQD)

P(X  x, Y  y)  P(X  x) P(Y  y) for all x and y

• Variables are uncorrelated 

Pearson correlation r is zero



10 20 30 40 500

X + Y

0

1

C
u
m

u
la

ti
v
e 

p
ro

b
ab

il
it

y
Unknown but positive dependence

X,Y ~ uniform(1,24)

Positive



10 20 30 40 500

X + Y

0

1

C
u
m

u
la

ti
v
e 

p
ro

b
ab

il
it

y
Uncorrelated variables

X,Y ~ uniform(1,24)

Uncorrelated



10 20 30 40 500

X + Y

0

1

C
u
m

u
la

ti
v
e 

p
ro

b
ab

il
it

y
“Linear” correlation

X,Y ~ uniform(1,24)

normal    

copula



4 6 8 10 12
0

0.5

1

4 6 8 10 12
0

0.5

1

4 6 8 10 12
0

0.5

1

Frank

(medial)

Mardia

(Kendall)

Clayton

X + Y

C
u
m

u
la

ti
v
e 

p
ro

b
ab

il
it

y

X ~ normal(5,1)

Y ~ uniform(2,5)

various correlations 

and dependence 

functions (copulas)

Can model dependence exactly too
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Example: dioxin inhalation

Location: Superfund site in California

Receptor: adults in neighboring community 

Contaminant: dioxin

Exposure route: inhalation of windborne soil

Modified from  Table II and IV in Copeland, T.L., A.M. Holbrow, J.M Otani, K.T. Conner and 

D.J. Paustenbach 1994. Use of probabilistic methods to understand the conservativism in 

California’s approach to assessing health risks posed by air contaminant. Journal of the Air and 

Waste Management Association 44: 1399-1413. 



Total daily intake from inhalation

R = normal(20, 2) //respiration rate, m3/day

CGL = 2  //concentration at ground level, mg/m3

Finh = uniform(0.46,1) //fraction of particulates retained in lung, [unitless]

ED = exponential(11) //exposure duration, years

EF = uniform(0.58, 1) //exposure frequency, fraction of a year

BW = normal(64.2, 13.19) //receptor body weight, kg

AT =  gumbel(70, 8) //averaging time, years



Input distributions
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Results
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No assumptions about dependencies

All variables mutually independent

If threshold is 2, assumption doesn’t matter

If threshold is 0.2,  assumption matters a lot



Uncertainty about dependence

• Impossible with sensitivity analysis since it’s 

an infinite-dimensional problem

• Kolmogorov-Fréchet bounding lets you be sure

• Sometimes there’s a big difference, sometimes 

it’s negligible



Try it in pba.r

Auto    Frechet Perfect     Opposite    Independent

Plus  + %+%     %/+/%   %o+o%   %|+|%

Minus  - %-%      %/-/%    %o-o% %|-|%

etc.



Independence

• In the context of precise probabilities, there 
was a unique notion of independence

• In the context of imprecise probabilities, 
however, this notion radiates into several 
distinct ideas

• The different kinds of independence behave 
differently in computations

SKIP



Imprecise probability independence

• Random-set independence

• Epistemic irrelevance (asymmetric)

• Epistemic independence

• Strong independence

• Repetition independence

• Others?
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Interesting example

• X = [1, +1],     Y ={([1, 0], ½), ([0, 1], ½)}

• If X and Y are “independent”, what is Z = XY ?

1 0 +1
0

1

X

X

1 0 +1
0

1

Y

Y
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Compute via Yager’s convolution

Y

([1, 0], ½) ([0, 1], ½)

X ([1, +1], 1) ([1, +1], ½) ([1, +1], ½)

1 0 +1
0

1

XY

XY

The Cartesian product with 

one row and two columns 

produces this p-box
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But consider the means

• Clearly, EX = [1,+1] and EY=[½, +½]

• Therefore, E(XY) = [½, +½]

• But if this is the mean of the product, and its 

range is [1,+1], then we know better bounds 

on the CDF 
XY

1 0 +1
0

1

XY

SKIP



And consider the quantity signs

• What’s the probability PZ that Z < 0?

• Z < 0 only if X < 0 or Y < 0 (but not both)

• PZ = PX(1PY) + PY(1PX), where

PX = P(X < 0),  PY = P(Y < 0)

• But PY is ½ by construction

• So PZ = ½PX + ½(1PX) = ½

• Thus, zero is the median of Z

• Knowing median and range improves bounds

1 0 +1
0

1

XY

XY

SKIP



Best possible

• These bounds are realized by solutions

If X = 0, then Z=0

If X = Y = B = {(1, ½),(+1, ½)}, then Z = B

• So these bounds are also best possible

1 0 +1
0

1

B

1 0 +1
0

1

Z=0

1 0 +1
0

1

XY

XY

SKIP



1 0 +1
0

1

XY

XY

1 0 +1
0

1

XY

XYXY

1 0 +1
0

1

XY

Random-set 

independence

Strong 

independence

Moment 

independence

So which is correct?

The answer depends on what one meant by “independent”
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So what?

• The example illustrates a practical difference between 

random-set independence and strong independence

• It disproves the conjecture that the convolution of 

uncertain numbers is not affected by dependence 

assumptions if at least one of them is an interval

• It tempers the claim about the best-possible nature of 

convolutions with probability boxes and Dempster-

Shafer structures

SKIP



Strategy for risk analysts

• Random-set independence is conservative

• Using the Cartesian product approach is 
always rigorous, though may not be optimal

• Convenient methods to obtain tighter bounds 
under stronger kinds of independence await 
discovery

SKIP



Fréchet

Repetition

Strong

Epistemic

Random-set

Uncorrelated

Couso et al. 1999
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Sensitivity analysis



Outline

• Introduction

• Don’t know the input distributions

• Psychometry of uncertainty

• Don’t know the correlations

• Not sure about the model

• When to get more data

• Conclusions

When to break down and get more data



Justifying further empirical effort

• If the incertitude associated with the results 

of an analysis is too broad to make practical 

decisions, and the bounds are best possible, 

more data is needed

– Strong argument for collecting more data

• Planning empirical efforts can be improved 

by doing sensitivity analysis of the model 



Sensitivity analysis of p-boxes

• Quantifies the reduction in uncertainty of a 

result when an input is pinched 

• Pinching is hypothetically replacing it by a 

less uncertain characterization



Pinching sensitivity analyses

• Model the possible contraction of incertitude in each 
input p-box from additional data to be collected

• Recompute analysis with this tighter p-box
– Others inputs held in their original form

– Or possibly tighten several if appropriate for planned data

• Estimate improvement in results 
– breadth(tighter input) / breadth(base)

• Repeat for all inputs or data collection strategies
– Don’t omit variables from sensitivity study or “shortlist”

• Allocate empirical effort by the magnitude of the 
potential improvement in uncertainty



Pinching to a precise distribution
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Examples
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Pinching to a point value
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Examples
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Pinching dependence

• An uncertain dependence can also be 

pinched to a more specific dependence

positive  independence

positive  perfect

positive  normal copula with correlation 0.3

Fréchet  independence

etc.



Example

Uses no assumption 

about dependence 

between A and B
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Pinching to a zero-variance interval

Assumes value is constant, but unknown

There’s no analog of this in Monte Carlo
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Pinching to a zero-variance interval
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Pinching to other targets

• Pinchings need not be to particular targets, 

e.g., a single point or a precise distribution

• Traditionally, the results of pinching to various 

targets were averaged (called “freezing”), but 

that approach erases the effect of uncertainty

• Instead, we ask:  what is the range of observed 

reductions in uncertainty as the pinching target 

is varied over many different possibilities?



Case study: dike reliability
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The inputs

Relative density of the revetment blocks
 = [1.60, 1.65] 

Block thickness
D = [0.68, 0.72] meters

Slope of the revetment
 = atan([0.32, 0.34]) = [0.309, 0.328] radians

Analysts’ “model uncertainty” factor
M = [3.0, 5.2]

Significant wave height (average of the highest third of waves)
H = weibull([1.2, 1.5] meters, [10, 12])

Offshore peak wave steepness
s = normal([0.039, 0.041], [0.005, 0.006])



Analysis
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Percent reduction of uncertainty

Nominal All possible

Input pinching pinchings 

 5.5 [   4.7, 5.7]

D 10.0 [   9.2, 11.0]

M 53.0 [ 41.0, 60.0]

 6.5 [   3.8, 9.1]

H 23.0 [ 15.0, 30.0]

s 3.6 [   2.0, 5.2]

Empirical study rank order:   M  H  D    s



On the same axis

0 10 20 30 40 50 60 70

D Ms  H

Empirical study rank order:   M  H  D    s

delta

D

M

alfa

H

s

delta

D

M

alfa

H

s

show H in rgb(250,140,30)

show M

show delta in blue

show D in rgb(210,0,210)

show s in red

show alfa in green

(intervals depicted as triangles)



Caveat

Omitting some variables from a sensitivity 

analysis (“shortlisting”) because their 

uncertainties are small is a bad idea.

Doing this reduces dimensionality,                    

but it also erases uncertainty.



What about engineering control?



Sensitivity analysis with p-boxes

• Local sensitivity via derivatives

• Explored macroscopically over the 

uncertainty in the input

• Describes the ensemble of tangent slopes to 

the function over the range of uncertainty



range 

of input

range 

of input

Monotone function Nonlinear function



Local derivatives
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delta = [1.60, 1.65] 

D = [0.68, 0.72] meters

alpha = atan([0.32, 0.34]) = [0.309, 0.328] radians

M = [3.0, 5.2]

H = weibull([1.2, 1.5] meters, [10, 12])

s = normal([0.039, 0.041], [0.005, 0.006])

del_delta = D

del_D = delta

del_alpha = 

del_M = H |*| tan(alpha) |/| (cos(alpha) |*| M^2 |*| sqrt(s))

del_H = 

del_s = H |*| tan(alpha) |/| (2 * cos(alpha) |*| M |*| s^(3/2))

show del_delta in red

show del_D in blue

show del_alpha in green

show del_M 

show del_H in teal

show del_s in red

del_s = min(del_s, 9.99 m)



On the same axis

Engineering control rank order:   s   D   H  M

-5 0 105

DM s H 

In plotting all these on the same axis, I’m assuming 

that the cost of changing a parameter by an 

(infinitesimal) unit amount is the same for all the 

parameters, i.e., that (∂

= (∂

Z

parameters, cum ∂

course I would have to make this same assumption 

even if all of the parameters were in exactly the 

same units.  Thus there is no special need (or 

capacity) to normalize for units.

Of course, if those factors (∂

the same, then the rankings could change.  So the 

ranking depicted here is contingent on the 

comparability of the costs of engineering control.  

Indeed, the same issue arises about sensitivity 

analyses performed on deterministic models.  What 

we’re doing here is the preliminary analysis which 

precedes the calculation that’ll finally express bang 

for actual buck. 

Note that similar issues arise about the rankings for 

the pinching analysis even though all of the 

sensitivities are expressed in dimensionless percent 

reductions of uncertainty.  In this case, practical 



Completely different rankings

• The uncertainty reduction in hypothetical pinching 

assesses the possible effect of more or better data

• Evaluating local derivates as p-boxes tells how 

effective control or management can be

Empirical study:   M  H  D    s

Engineering control: s   D   H  M

Best for control

Best for study



• Empirical planning

– What variables need study to reduce uncertainty?

• Engineering control

– What variables can be modified to change the result?

• Robustness analysis

– How robust are the results of the assessment?

• Tracking analysis

– Which input combinations yield extreme results?

Different ‘sensitivity’ questions











Validation



Goals

• Objectively measure the conformance 

of predictions with empirical data

• Use this measure to characterize the 

reliability of other predictions

252



Initial setting

• The model is fixed, at least for the time being

– No changing it on the fly during validation

• A prediction is a probability distribution

– Expressing stochastic uncertainty

• Observations are precise (scalar) numbers

– Measurement uncertainty is negligible

relaxed 

later

253



Validation metric

• A measure of the mismatch between the 

observed data and the model’s predictions

– Low value means a good match

– High value means they disagree

• Distance between prediction and data

254



Desirable properties of a metric

• Expressed in physical units

• Generalizes deterministic comparisons

• Reflects full distribution

• Not too sensitive to long tails

• Mathematical metric

• Unbounded (you can be really off)
255
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How we look at them
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One suggestion for a validation metric

Area or average 

horizontal distance

between the empirical 

distribution Sn and the 

predicted distribution F

259
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• “Distance” between two distributions

• Smallest mean absolute difference of deviates

Area metric

260



Reflects full distribution

Matches in mean

Both mean and variance

Matches well overall
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Single observation
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A single datum can’t match an entire distribution (unless it’s degenerate)262



When the prediction is really bad

• The metric degenerates to simple distance

• Probability is dimensionless, so units are the same
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Depends on the local scale

• Depends on the units

• Could standardize, 

but would no longer 

be in physical units

0
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Why physical units?

• Distributions in the left graph don’t even overlap 

but they seem closer than those on the right
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Why an unbounded metric?

• Neither overlaps, but left is better fit than right

• Smirnov’s metric Dmax considers these two cases 

indistinguishable (they’re both just ‘far’)
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Pooling data comparisons

• When data are to be compared against a 

single distribution, they’re pooled into Sn

• When data are compared against different

distributions, this isn’t possible

• Conformance must be expressed on some 

universal scale

269



Universal scale

ui=Fi (xi) where xi are the data and Fi are their 

respective predictions
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u-pooling
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Statistical test for model accuracy

• Kolmogorov-Smirnov test of distribution of 
ui’s against uniform over [0,1]

• Tests whether the data were drawn from the 
respective prediction distributions

Probability integral transform theorem (Angus 1994) says 
the u’s will be distributed as uniform(0,1) if xi ~ Fi

• Assumes the empirical data are independent 
of each other
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Extends to correlated multivariate case

• Li, et al. (2014) say u-pooling doesn’t generalise

to multivariate predictions with correlations

– But they just misunderstood how to do it

• Two kinds of u-pooling:

Are not predicting (or don’t know) dependencies

Are making predictions about dependencies

Small d means match in distributions and dependencies

273



Epistemic uncertainty
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Prediction

Data

How should we compare intervals?
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Validation for intervals 

• Validation measure is the smallest difference

• Overlapping intervals match perfectly

• Validity is distinct from precision

– Otherwise no value in an uncertainty analysis
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http://encarta.msn.com/map_701512318/English_Channel.html
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Epistemic uncertainty in predictions

• In left, the datum evidences no discrepancy at all

• In middle, the discrepancy is relative to the edge

• In right, the discrepancy is even smaller
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Epistemic uncertainty in both
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Predictive capability
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Predictive capability

• Not a measure of how good the model is

• A characterization of how much we should 

trust its predictions

282



Predictive capability

• Additional uncertainty (estimate of possible 

error) that is recognized by comparing a 

model’s predictions against available data

• On top of introspective model uncertainty 

estimates already embodied in the analysis

• How should we characterize this uncertainty?

• Let’s consider three possible approaches 283
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Signed difference and bias
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Research topic

• Difference interval, distribution, or p-box

• Sign

– Signed differences to account for model bias

– Plus-or-minus absolute differences

• Extrapolation by regression analysis

– From conditions for which data are available to 
conditions at which the prediction is to be made

• Interpolation by regression analysis

– Sampling uncertainty about the differences
288
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Regression accounts 

for the trend & scatter 
even when there’s one or no relevant datum

Interpolating at 800 degrees
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Sampling uncertainty about data

• Regression methods account for the trends and 

scatter (variation over some axis) of the data

• But, for predictive capability, the blue data       

p-box should reflect sampling uncertainty too

– May be important when sample size is small

– Can use confidence or tolerance band to form the 

blue p-box summarizing the data
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Predictive capability

• Turns on epistemic and aleatory uncertainty 

• Post-hoc measure of model uncertainty 

• Distinct from validation

• Clearly crucial to any sort of modeling

• Still the subject of broad discussion and debate 
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Assessment versus reliability

Validation

• Discrepancy between 

prediction and data

• Absolute value

• May neglect sampling 

uncertainty of data

• Summarizes across 

predictions and even 

dimensions

Predictive capability

• Distribution of differences 

between prediction and data

• May have sign

• Must account for sampling 

uncertainty about data

• Uses regression across 

predictions, but limited to 

one dimension 
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Summary

• Both assessment and reliability of extrapolation

– How good is the model?  

– Should we trust its pronouncements? 

– Calibration and updating are separate activities

• Validation measure must be bespoke but universal; 
predictive capability is still part of modeling

• Epistemic uncertainty introduces some wrinkles

– Full credit for being modest about predictions

Validation

Predictive capability

294



Backcalculation



Backcalculation

• Engineering design requires backcalculation

• How can we untangle the expression

A+B = C

when we know A and C, and need B?



Can’t just invert the equation

Dose = Concentration × Intake / Bodymass

Concentration = Dose  Bodymass / Intake

When concentration is put back into the forward 

equation, the resulting dose is wider than planned

prescribed knownunknown
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Large doses in the realized distribution (arising from 

the allowed distribution of concentrations) are more 

common than were originally planned 
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Normal approximation

• If A+B=C, compute B as CA under the assumption 

the correlation between A and C is r = sd(A)/sd(C)

To simulate normal deviates with correlation r, compute

Y1 = Z1  1 + 1

Y2 = (rZ1 + Z2 (1r2))  2 + 2

where Z1 and Z2 are independent standard normal deviates, 
and  and  denote the respective desired means and 
standard deviations

• Uses Pearson correlation (not rank correlation)

• Good for multivariate normal, and maybe more
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Iterative (trial & error) approach

• Initialize B with CA

• This distribution is too wide

• Transform density p(x) to p(x)m

• Rescale so that area remains one

• Whenever m > 1 dispersion decreases

• Vary m until you get an acceptable fit



By trial and error, you may be able to find a distribution of 

concentrations that yields something close to the planned 

distribution of doses.  This is not always possible however.
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Backcalculation with intervals

• Backcalculation is well understood for intervals

• Each interval operation has multiple modes:

Shell (or “united”) solution is forward 

projection

The shell contains every solution

Kernel (or “tolerance”) solution is backward

Every element of the kernel is a solution



Kernel versus shell

A  [1,2] C  [2,6] C  A  B

There are different ways to solve for B

Shell

B  C  A

 [C1 – A2, C2 – A1]

 [0,5]

Kernel

B  backcalc(A,C)

 [C1 – A1, C2 – A2]

 [1,4]
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When you 

need for

A + B  C

A – B  C

A  B  C

A  / B  C

A ^ B  C

2A  C

A²  C

And you have 

estimates for

A, B

A, C

B ,C

A, B

A, C

B ,C

A, B

A, C

B ,C

A, B

A, C

B ,C

A, B

A, C

B ,C

A

C

A

C

Use this formula

to find the unknown

C = A + B

B = backcalc(A,C)

A = backcalc (B,C)

C = A – B

B = –backcalc(A,C)

A = backcalc(–B,C)

C = A * B

B = factor(A,C)

A = factor(B,C)

C = A / B

B = 1/factor(A,C)

A = factor(1/B,C)

C = A ^ B

B = factor(log A, log C)

A = exp(factor(B, log C))

C = 2 * A

A = C / 2

C = A ^ 2

A = sqrt(C)

 means “is a subset of”



Backcalculation with p-boxes

Suppose A + B = C, where 

A = normal(5, 1)

C = {0  C, median  1.5, 90th %ile  35, max  50}
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Backcalc algorithm for p-boxes

Additive untangling of the kernel for B from the equation C=A+B,  
where p-boxes for A and C are known.  Only the algorithm for the left 
bound is shown; the right bound is similar.

N = number of percentiles (%ile) used in the representation;

left limit on B at lowest %ile = left limit on C at lowest %ile – left limit on A at lowest %ile;

for i = 1 to N do begin

set flag to "not done";

for j = 0 to i–1 do begin

if (left limit on C at ith %ile)(left limit on A at [i–j]th %ile)+(left limit on B at the jth %ile)

then set flag to "done";

if flag is "done"

then left limit on B at ith %ile = left limit on B at [i–1]th %ile {the one right below it}

else left limit on B at ith %ile = left limit on C at ith %ile – left limit on A at 0th %ile;

end; {for j}

end; {for i, left bound}



Getting the answer

• The backcalculation algorithm basically 

reverses the forward convolution 

• Any distribution 

totally inside B is 

sure to satisfy the 

constraint … it’s

a “kernel”
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Check it by plugging it back in

A + B = C*  C

-10 0 10 20 30 40 50 60
0

1

C* C



Precise distributions don’t work

• Precise distributions can’t express the target

• A concentration distribution giving a prescribed 
distribution of doses seems to say we want
some doses to be high

• But any distribution to the left would be better

• A p-box on the dose target expresses this idea



Backcalculation algebra

• Can define untanglings for all basic operations

e.g., if A  B = C, then B = exp(backcalc(ln A, ln C))

• Can chain them together for big problems

• Assuming independence widens the result

• Repeated terms need special strategies



Se concentration in SF Bay mussels

San Francisco Bay blue mussels Mytilus edulis are

contaminated with the heavy metal selenium (Se)

What concentration [Se] in the bay is safe for 

humans given that it concentrates in food chains

Mussels HumansPlanktonBioavailable 
Se



What is the p-box?

Tolerable Se doses for humans

NOAEL  15 mg/kg/d (ATSDR 1996)

• Median exposures no 

greater than 5 mg/kg/d  

• 95th %tile exposure no 

greater than 10 mg/kg/d 

• Maximum exposure of 

15 mg/kg/d
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Mussel consumption
• Data on mussel consumption by Americans were collected by the U.S. National Marine Fisheries Service in 

a nationwide survey between 1973 and 1974 (Rupp et al. 1980).  These data were re-analyzed by Ruffle et 
al. (1994) and fit to lognormal distributions.  Genders are combined for adults aged 19-98, and the 
consumption data is divided into U.S. regions.  We chose the data for the Pacific region (WA, OR, CA, AK, 
and HI)

• The data are very old, but the best available.  Ruffle et al. suggest adding 0.22 to the mean intake rate to 
account for increased shellfish consumption since 1974, and the intake distribution is then lognormal with 
mean (1.177+0.22) and standard deviation 0.938 g/d. 
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Human body mass
• Brainard and Burmaster (1992) provide body weight distributions for men and 

women aged 18-74 using data in the NHANES II data set (collected between 
1976 and 1980).  
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Use “factor” to backcalculate

The factor algorithm untangles the convolutions

• Finds bounds on WConc distributions leading to safe doses

• Repeated terms (g and p) need “region-growing” strategy

• Result has thickest possible tails
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Factor algorithm

Multiplicative untangling of the kernel for B from the equation C=AB,  
where p-boxes for A and C are known.  Only the algorithm for the left 
bound is shown; the right bound is similar.

N = number of percentiles (%ile) used in the representation;

left limit on B at lowest %ile = left limit on C at lowest %ile / left limit on A at lowest %ile;

for i = 1 to N do begin

set flag to "not done";

for j = 0 to i–1 do begin

if (left limit on C at ith %ile)(left limit on A at [i–j]th %ile)×(left limit on B at the jth %ile)

then set flag to "done";

if flag is "done"

then left limit on B at ith %ile = left limit on B at [i–1]th %ile {the one right below it}

else left limit on B at ith %ile = left limit on C at ith %ile / left limit on A at 0th %ile;

end; {for j}

end; {for i, left bound}



Results
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Check
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Now what?

• So we know how low the Se concentrations in 

mussels have to be to be safe

• What does that imply about concentrations for 

the water in the bay?



Multiple pathways

Bioavailable 

selenium (Se)
Plankton Mussels Humans



Untangling the trophic chain

• Steady-state model for the trophic chain (Spencer et al. 2001) 

• Assumes all parameters, including [Se] in water, are at 
equilibrium

• Needs two backcalculations

– First determines the p-box around the set of Se concentration 
distributions in edible mussel tissue that are protective of 
human health

– Second derives the p-box around the set of distributions of Se 
concentration in water that result in concentrations of Se in 
edible mussel tissue meeting the constraint



Steady-state fate/transport model

Mconc = Se concentration in mussels (g/g)

Wconc = Se concentration in bay water (g/L)

Intake = mussel intake rate (g/d)

BW = adult body weight (kg)

k = mussel Se uptake rate from the dissolved phase (L/g/d)

h = mussel Se assimilation from phytoplankton (unitless)

B = Se bioconcentration factor in phytoplankton (L/g)

g = mussel water filtration rate (L/g/d)

p = phytoplankton concentration (g/L)

l = mussel selenium elimination rate (d-1)

f = mussel carbon assimilation efficiency (unitless)

N = mussel net growth efficiency (unitless)

BW

Intake
MConcDose 

 
 pgNfl

pgBhk
WConcMConc






We want to 

backcalculate

(Spencer et al. 2001)
The repeated variables, g and P, were 

accounted for by subinterval reconstitution



Steady-state parameters
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So what?

• Many distributions drawn from the shell are not 
protective of human health

• Algorithms can backcalculate the kernel for both 
simple and complex exposure models

• The bioavailable Se concentration in San 
Francisco Bay is well within the kernel of 
tolerable concentration distributions, as is the Se 
concentration in edible mussel tissue



Conclusion

• Engineering design requires backcalculation

• Monte Carlo methods don’t generally work 

except in a trial-and-error approach

• Can express the constraint target as a p-box, 

although this is awkward in a precise distribution



Not the same as deconvolution

Deconvolution is a related procedure for equations 
involving uncertainty

Deconvolution is used, for instance, to improve the 
estimate of the distribution of X given a distributions 
of measurements Y and measurement error 

Y = X + 

Deconvolution doesn’t satisfy a constraint like 
backcalculation does

Variance of X should be 

smaller than that of Y
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Case studies



Case study:

Spacecraft design under 

mission uncertainty



Integrated concurrent engineering

• Real-time collaborative, interactive process

– Implemented at JPL, LaRC, and others

• Reduces design time by an order of magnitude

– But quantitative risk assessment is difficult

• Design solutions are iterative

– So a Monte Carlo approach may not be practical



Mission

Deploy satellite carrying a large optical sensor

Sensor is 3.2 m long, 

weighs 720 kg and has an 

angular resolution of 
8.8
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X Y

Z



Wertz and Larson (1999) Space Mission Analysis and Design (SMAD). Kluwer.
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Typical subsystems

Attitude control

Command data systems

Configuration

Cost

Ground systems

Instruments

Mission design

Power

Program management 

Propulsion

Science

Solar array

Systems engineering

Telecommunications – System

Telecommunications – Hardware

Thermal control
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Solar panel size determines

Moments of inertia



Demonstration system

Attitude control

Power

Solar array

• Calculations within a single subsystem (ACS)

• Calculations within linked subsystems



Attitude control subsystem (ACS)

• 3 reaction wheels

• Design problem: solve for h

– Required angular momentum

– Needed to choose reaction wheels

• Mission constraints

– torbit = 1/4 orbit time

– slew = max slew angle

– tslew = min maneuver time

• Inputs from other subsystems

– I, Imax, Imin = inertial moment
– Depend on solar panel size, which 

depends on power needed, so on h
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h  tot torbit
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 slew 
4slew
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Attitude control input variables
Symbol Unit Variable Type Value SMAD

Cd unitless Drag coefficient p-box range=[2,4]

mean=3.13

3.13

La m Aerodynamic drag torque moment p-box range=[0,3.75] 

mean=0.25

0.25

Lsp m Solar radiation torque moment p-box range=[0,3.75]

mean=[0.25]

0.25

D A m2 Residual dipole interval [0,1] 1

i degrees Sun incidence angle interval [0,90] 0

 kg m3 Atmospheric density interval [3.96e-12, 

9.9e-11]

1.98e-11

 degrees Major moment axis deviation from nadir interval [10,19] 10

q unitless Surface reflectivity interval [0.1,0.99] 0.6

Imin kg m2 Minimum moment of inertia interval [4655] 4655

Imax kg m2 Maximum moment of inertia interval [7315] 7315

 m3 s-2 Earth gravity constant point 3.98e14 3.98e14

A m2 Area in the direction of flight point 3.752 3.752

RE km Earth radius point 6378.14 6378.14

H km Orbit altitude point 340 340

Fs W m-2 Average solar flux point 1367 1367

slew degrees Maximum slewing angle point 38 38

c m s-1 Light speed point 2.9979e8 2.9979e8

M A m2 Earth magnetic moment point 7.96e22 7.96e22

tslew s Minimum maneuver time point 760 760

As m2 Area reflecting solar radiation point 3.752 3.752

torbit s Quarter orbit period point 1370 1370



Coefficient of drag, Cd

Cd (unitless)
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Aerodynamic drag torque moment, La
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Required angular momentum, h
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Value of information: pinching 

Initial result

Pinching 
(atmospheric density)

 (kg m-3) h (N m sec)
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Linked subsystems

• Minimum moment of inertia Imin

• Maximum moment of inertia Imax

• Total torque tot

• Total power Ptot

• Solar panel area Asa

Iteratively calculated

Attitude 
control

Power

Solar 
array

Moments of inertia

determine 

Torque needed 

determines

Power requirements

determines 

Solar panel size

determines

Moments of inertia



Analysis of calculations

• Do p-boxes enclose Monte Carlo and SMAD?

• Does iteration through links cause runaway 

uncertainty growth (or contraction)?

• Four parallel analyses

– SMAD’s point estimates

– Monte Carlo simulation

– P-boxes but without linkage among subsystems

– P-boxes with fully linked subsystems



Ranges of results

tot (N m)
0.0 0.2 0.4 0.6 0.8 1.0

Ptot (W)
1000 1500 2000

Asa (m2)
0 10 20 30 40 50 60

Probability bounds

PBA but unlinked

Monte Carlo simulation

SMAD point estimates



Findings

• Calculations workable

• No runaway inflation (or loss) of uncertainty

• Comprehensive bounds easier than via Monte Carlo

• Practical and useful results

• Uncertainty influences engineering decisions

• Reducing uncertainty about  (by picking a launch 

date) strongly reduces design uncertainty



Attitude control subsystem



h  tot torbit



 slew 
4slew
tslew

2
I



 tot slew dist



 dist   g   sp  m   a



 g 
3

2 RE  H 
3
Imax  Imin sin 2 



sp  Lsp
Fs

c
As 1 q cos i 



m 
2MD

RE H 
3



a 
1

2
LaCdAV

2

Symbol Unit Type Value SMAD

Cd unitless p-box range=[2,4]

mean=3.13

3.13

La m p-box range=[0,3.75] 

mean=0.25

0.25

Lsp m p-box range=[0,3.75]

mean=[0.25]

0.25

D A m2 interval [0,1] 1

i degrees interval [0,90] 0

 kg m3 interval [3.96e-12, 

9.9e-11]

1.98e-11

 degrees interval [10,19] 10

q unitless interval [0.1,0.99] 0.6

Imin kg m2 interval [4655] 4655

Imax kg m2 interval [7315] 7315

 m3 s-2 point 3.98e14 3.98e14

A m2 point 3.752 3.752

RE km point 6378.14 6378.14

H km point 340 340

Fs W m-2 point 1367 1367

slew degrees point 38 38

c m s-1 point 2.9979e8 2.9979e8

M A m2 point 7.96e22 7.96e22

tslew s point 760 760

As m2 point 3.752 3.752

torbit s point 1370 1370
Be careful with units!



Neuroscience of risk
Decade of the Brain (’90s)



Psychometry

• Probability and decision theory are rife with 

paradoxes that no other areas in math have

• Cottage industry in documenting ways in 

which humans mess up probabilities 



Paradoxes & biases

• Ellsberg paradox

• St. Petersburg paradox

• Two-envelopes problem

• Monty Hall problem

• Simpson’s paradox

• Risk aversion

• Loss aversion



Risk aversion

• Suppose you can get $100 if a randomly 

drawn ball is red from an urn with half red 

and half blue balls…or you can just get $50 

• Which prize do you want?

$50

EU is the same, but most people take the sure $50



Ambiguity aversion

• Balls can be either red or blue

• Two urns, both with 36 balls

• Get $100 if a randomly drawn ball is red 

• Which urn do you wanna draw from?

Keynes noted this universal preference but probabilists could explain the preference by saying your probability for 

Keynes; Dempster



Ellsberg Paradox

• Balls can be red, blue or yellow (probs are R, B, Y )

• A well-mixed urn has 30 red balls and 60 other balls

• Don’t know how many are blue or how many are yellow

Gamble A Gamble B

Get $100 if draw red Get $100 if draw blue

Gamble C Gamble D

Get $100 if red or yellow Get $100 if blue or yellow

R > B

R + Y < B + YR < B



Persistent paradox

• People always prefer unambiguous outcomes

– Doesn’t depend on your utility function or payoff

– Not related to risk aversion

– We simply don’t like ambiguity

• Not explained by probability theory, or by 

prospect theory



Ambiguity (incertitude)

• Ambiguity aversion is ubiquitous in human 

decision making, and is utterly incompatible 

with Bayesian norms

• Humans are wired to process incertitude 

separately and differently from variability



Neuroscience of risk perception

Instead of being divided into rational and emotional sides, 

the human brain has many special-purpose calculators

(Marr 1982; Barkow et al. 1992; Pinker 1997, 2002)



Partial list of mental calculators

• Language (grammar and memorized dictionary)

• Practical physics (pre-Newtonian)

• Intuitive biology (animate differs from inanimate)

• Intuitive engineering (tools designed for a purpose)

• Spatial sense (dead reckoner and mental maps)

• Number sense (1, 2, 3, many)

• Probability sense (frequentist Bayes)

• Uncertainty detector (procrastination)

• Intuitive economics (reciprocity, trust, equity, fairness)

• Intuitive psychology (theory of mind, deception)

(after Pinker 2002; 1997; Marr 1982; Barkow et al. 1992)

People with damage to this calculator seem to be: 

Good Bayesians (damage to uncertainty detector)

Sociopaths, CEOs (damage to reciprocity sense)

Autistics (damage to sense of the theory of mind)



What’s the evidence for an 

‘uncertainty detector’ in humans?



fMRI

• Hsu et al. (2005) found 

localized regions of activity in 

the brain under situations of 

ambiguity (incertitude)

• Amygdala associated with 

processing fear and threat 

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems 

responding to degrees of uncertainty in human decision-making. Science 310: 1680-1683.

•



Ambiguity/incertitude detector

• Humans have an incertitude processor 
– Triggered by situations with ambiguity

– Especially focused on the worst case

– Common response is procrastination

• Functional organ

– Normal feature of the human brain, also apes, rats

– Not a product of learning

– Visible in fMRI

• Brain lesions can make people insensitive to 

incertitude…so they behave as Bayesians



Other species

• Chimpanzees and bonobos preferred peanuts 

(which they like less than bananas) when they 

don’t know the probability of getting bananas

Rosati, A., and B. Hare 2010. Chimpanzees and bonobos distinguish between risk and ambiguity. Proceedings of Royal Society: 

Biology Letters. See also “Apes unwilling to game when odds are uncertain” http://www.physorg.com/print209830622.html

http://www.physorg.com/print209830622.html 

A pair of  bonobos enjoy banana slices at the Lola ya Bonobo sanctuary Vanessa Woods
Vanessa Woods

http://nrich.maths.org/7326
http://nrich.maths.org/7326


What’s the evidence for a 

‘probability sense’ in humans?



Probability sense

• One of the ways we know there is a probability 

calculator is that we can watch it turn on

• Platt and Glimcher  (NYU) found particular 

neurons in the lateral intraparietal cortex in 

rhesus monkeys encode both the probability of 

an outcome and its magnitude

• We can also see it in reasoning behaviors



Bayesian reasoning (poor)

12-18% of medical students get this correct

If a test to detect a disease whose prevalence is 0.1% 

has a false positive rate of 5%, what is the chance that a 

person found to have a positive result actually has the 

disease, assuming that you know nothing about the 

person’s symptoms or signs?  ___%

Casscells et al. 1978 replicated in Cosmides and Tooby 1996



Bayesian reasoning (good)

If a test to detect a disease whose prevalence is 1/1000 

has a false positive rate of 50/1000, what is the chance 

that a person found to have a positive result actually has 

the disease, assuming that you know nothing about the 

person’s symptoms or signs?  ___ out of ___.

76-92% of medical students get this correct.

That it’s so easy to solve suggests hardwiring.

1              51

Casscells et al. 1978 replicated in Cosmides and Tooby 1996



Calculators must be triggered

• Humans have an innate probability sense, but 

it is triggered by natural frequencies

• This calculator kicked in for the medical 

students who got the question in terms of 

natural frequencies, and they mostly solved it

• The mere presence of the percent signs in the 

question hobbled the other group

Cosmides & Tooby 1996; Gigerenzer 1991

Format of sensory data matters, not the meaning 



Multiple calculators may fire

• There are distinct calculators associated with 

– Probabilities and risk (variability) medical students

– Ambiguity and uncertainty (incertitude) Hsu et al.

– Trust and fairness                                    Ultimatum Game

• Brain processes them differently

– Different brain regions

– Different chemical systems

• They can give conflicting answers
• (e.g. Glimcher & Rustichini 2004 and references therein)

They can give conflicting answers, or compute 
different components of total risk 



Conflict explains Ellsberg paradox

• Ambiguity detector countermands any risk 

estimate that might be produced by the 

probability sense

• What matters most, and perhaps exclusively, 

is how bad it could be…not how likely or 

unlikely that outcome is



Biological basis for Ellsberg

• Probability sense and the ambiguity detector 
interfere with each other

• Humans do not make decisions based purely 
on probability in such cases

• Probabilists use equiprobability to model 

incertitude which confounds it with variability

Hsu et al. 2005



Conflict may explain other biases too

• Ambiguity aversion
Avoiding options when probabilities seem unknown

• Loss aversion
Disliking a loss more fervently than liking a gain of the same magnitude

• Hyperbolic discounting
Preferring immediate payoffs over later (more intense the closer to present payoffs are)

• Base rate fallacy
Neglecting available statistical data in favor of particulars

• Neglect of probability
Disregarding probability in decision making under uncertainty

• Pseudocertainty
Making risk-averse choices for positive outcomes, but risk-seeking for negative

•

•

•

•

•

•

•

People just seem 

downright stupid

about risks and 

uncertainty

Kahneman and Tversky

•http://en.wikipedia.org/wiki/Cognitive_bias



Loss aversion

(asymmetry in perceptions about losses and gains)



Loss aversion

Losses
reference

point

Gains

Prospect theory adopts (but does not explain) loss aversion

People hate losses more 

than they love gains



But why?

• Prospect theory is the state of the art

• Purely descriptive

• Doesn’t say why loss aversion should exist

• What is the biological basis for loss aversion?

• How could it have arisen in human evolution?



Pessimism in 

uncertainty

value
utility

outcome

Loss aversion

Let’s make a simpler 

symmetry assumption



value
utility

If uncertainty 

is massive…

…the bottom falls 

out of the market

Gains seem valueless; Losses seem infinite



Loss aversion disappears with certainty

• Loss aversion disappears 

– with a person you trust, or 

– after the gamble has been realized
• Gilbert et al. 2004

• Kermer et al. 2006

• Yechiam & Ert 2007

• Erev, Ert, & Yechiam 2008

• Ert & Erev 2008

• When losses and gains are surely exchangeable, 

the uncertainty contracts to the symmetric utility

Lemon avoidance heuristic

Post



Direct experimental evidence

• Ellsberg made the probabilities ambiguous

• Psychologist Christian Luhmann (Stony Brook)

made rewards ambiguous

– Visually obscured the promised payoffs

– “I’ll pay you between 1 and 10 bucks”

• Loss aversion varies with the size of uncertainty

• Disappears with certainty



Clinical evidence

• Amygdala damage eliminates loss aversion

• But doesn’t affect a person’s ability to gamble 

and respond to changing values and risk (n = 2)

• Amygdalectomied rhesus monkeys approach 

stimuli that healthy monkeys avoid

De Martino, B., C.F. Cramerer and R. Adolphs (2010). Amygdala damage eliminates monetary loss aversion. Proceedings of 

the National Academy of Sciences of the United States of America 107(8): 3788–3792. 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840433/pdf/pnas.200910230.pdf

Mason et al. (2006). Emotion 6: 73-81.

Greater amygdala activation in people with inhibited personalities

They prefer higher gains and smaller losses, like normal people

Loss aversion was measured by comparing desirability of  various mixed gambles

They do not have an increased appetite for risk per se

They disliked increased outcome variance (risk aversion) as much as normal people do
Still normal in 

risk aversion

No fMRI study has shown activation of  the amygdala associated with loss aversion, 

but there’s only been one fMRI study of  loss aversion 



But why pessimism?

• Pessimism is often advantageous evolutionarily

• Natural selection can favor pessimism

– Death is ‘hard selection’

– Animal foraging strategies

– Programmed plant behaviors

• Being wrong often has asymmetric consequences

– Foraging:  Finding dinner versus being dinner

– Competition:  Preemption versus being preempted



Gersani, M., Brown, J. S., Brien, E. E., Maina, G. M., & Abramsky, Z. (2001). Tragedy of the commons as a result of root 

competition. Journal of Ecology 89: 660-669.

Same total 

amount of  soil

And even in plants!



Pessimism is not inevitable

• Pessimism is not the only reaction to uncertainty

– Normal people in stressful situations

– Pathological gamblers

– Maniacs

• Ambiguity aversion decreases with optimism 

(Pulford 2009)

Pulford, B. D. (2009). Is luck on my side? Optimism, pessimism, and ambiguity aversion. 

Quarterly Journal of Experimental Psychology, 62: 1079-1087.



Third calculator: intuitive economics

• Computes fairness of situations

• Detects cheaters who are getting more than their 

share, or not shouldering their responsibility

Ultimatum Game: a scientist offers money to two players

• One player proposes how the money should be divided 

between the two players

• The other player can accept (and both get their share) or 

reject the division (and neither gets anything)



How should you play?

• Economists say the rational behavior is 

– Responder: always accept any deal (it’s free money!)

– Proposer: always offer the smallest possible amount

• Actual plays are much closer to fair

– Proposer offers a split much closer to 50:50

– Responder accepts only if the split is closer to 50:50



Universal in humans

• Ultimatum Game is only surprising to economists

• The pattern may be universal in human behavior

– Over 100 papers in 25 western societies

– 15 non-western societies 

• Exceptions

– Sociopaths  Kids under 5

– Chimpanzees  People playing against machines

• Chimps are more rational that humans



Why do humans do this?

• Adaptation for reciprocal altruism

– Cares about fairness and reciprocity

– Alters outcomes of others at a personal cost

– Rewards those who act in a prosocial manner

– Punishes those who act selfishly, even when 
punishment is costly

• Mediated by the fairness calculator

– Pattern absent when fairness is not an issue



“Irrationality”

• Irrationality is a hallmark of human decisions

• Why are humans biased, irrational, stupid?

– Using the wrong mental calculator (optical illusion)

– Disagreement among mental calculators

– Concerned with issues outside the risk analysis

• Fairness, justice

• Outcomes not treated in the analysis

• Chance the risk analyst is lying

• Chance the risk analyst is inept

Different 
calculators



Currently, confusion is guaranteed

• Neuroimagery and clinical psychology show 

humans distinguish incertitude and variability

• Probabilists traditionally use equiprobability 

to model incertitude, which confounds the two

• Risk analysts report their findings in ways that 

we know will create misunderstandings



Import for risk assessment

• Risk analyses woefully incomplete

– Neglect or misunderstand incertitude 

– Omit important issues and thus understate risks

• Presentations use very misleading formatting

– Percentages, relative frequencies, conditionals, etc.

• Both problems can be fixed

– By changing analysts’ behavior (not the public’s)



Risk communication

• Informed consent in medicine

• Effective communication to decision makers

• If you want people to understand your risk 

calculations, you have to speak their language



Take-home messages

• Evolution has wired humans to see incertitude 

distinctly, and differently, from variability

• Conflict between the two seems to explain 

many probability and decision paradoxes

• There is a proper calculus that handles both 

although it is incompatible with current norms



Statistics for the next century



Small sample size

• Student’s t statistic introduced in 1908

• Statistics has spent a century developing 

analyses in which sample size is limiting

• But sample sizes are not so small anymore

– Financial data

– Continuous mechanized sampling

– Satellite imagery and other mass collections

– Commercial data

– Social media

– Internet of Things (30 trillion sensors feeding the web)



Other uncertainties

• Sample size will always be an issue

• But it may not always be the only issue anymore

• Other issues become important as sample sizes grow

– Measurement imprecision (mensurational uncertainty)

– Missingness and censoring

– Model uncertainty, non-stationarity, etc.

• Many believe it’s always better to collect more 
samples than to improve the precision of samples

– This is not true

– Believing this creates suboptimal experimental designs



Measurements aren’t reals

• Real line is a poor model for measurements

– “Measure” by comparing readings against a scale

– Almost all real values cannot be measurements

• All real measurements have uncertainties

– A real value cannot express this

• Real values have infinitely many zeros after the 

last decimal place

– Such precision is never achievable in the real world

• The real line is totally ordered
– But a measurement may not be only larger, smaller or the same as another



Missing data

• Traditional methods assume MCAR or MAR

• These assumptions are not always reasonable

• Assuming them anyway leads to wrong answers

• Correctly accounting for missingness can yield 

dilation, in which your uncertainty increases 

even when you increase sample size

– If a temperature sensor fails from extremes in either 

direction, a missing value may mean the temperature 

is much higher or much lower than you thought



Censoring

• Traditional methods are decidedly bad and can 

be grossly misleading

• Likelihood strategies make assumptions that 

may not be tenable

– Can produce unreasonable results



Interval data

• Calculating variances, t-statistics, etc. for data 

sets that contain intervals are NP-hard problems

• But various special cases are quite easy

– Censored

– Binned

– Same precision

– Nested

• These let us compute variance in O(n) time

– Can compute variance for 500,000 samples in less 

than 0.5 second on a laptop



Interval uncertainty

• Intermittent observations

• Plus-minus intervals

• Non-detects and data censoring

• Missing values

• Blurring for privacy or security reasons

• Bounding studies

…often neglected.  But if it can’t be, then…

Incertitude



Two approaches

• Model each interval as uniform distribution

– Presumes different values are equally likely

– Laplace’s principle of insufficient reason

– Calculations relatively easy, but interpretation subtle

• Model each interval as a set of possible values

– Specifies no single distribution within the range

– Theory of imprecise probabilities

– Calculations often NP-hard, but interpretation easy



A tale of two data sets

Skinny data Puffy data

[1.00, 2.00] [3.5, 6.4]

[2.68, 2.98] [6.9, 8.8]

[7.52, 7.67] [6.1, 8.4]

[7.73, 8.35] [2.8, 6.7]

[9.44, 9.99] [3.5, 9.7]

[3.66, 4.58] [6.5, 9.9]

[0.15, 3.8]

[4.5, 4.9]

[7.1, 7.9]

a.1=[1.00, 2.00]

a.2=[2.68, 2.98]

a.3=[7.52, 7.67]

a.4=[7.73, 8.35]

a.5=[9.44, 9.99]

a.6=[3.66, 4.58]

; b.7=[0.15, 3.8]

; b.8=[4.5, 4.9]

; b.9=[7.1, 7.9]

for i = 1 to 6 do u.i = U(left(a.i), right(a.i))

s = v = 0

for i = 1 to 6 do s = s + mean(u.i)

s/6

1/

ma=mix(1,u.1, 1,u.2, 1,u.3, 1,u.4, 1,u.5, 1,u.6) 

na = N(s/6,sqrt(8.95899))
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Empirical distribution

• Summary of the data themselves

• No distributional assumptions

• Uniforms approach yields a single distribution

• Intervals approach yields a probability box 

(i.e., a class of distributions)



Intervals approach

• Each side is cumulation of respective endpoints

• Represents both incertitude and variability
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Uncertainty about the EDF
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Uniforms approach

• Mixture (vertical average) of uniforms

• Conflates incertitude and variability
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What’s the difference?

• Might be advisable to propagate the two kinds 

of uncertainty separately and differently

• Example: suppose we’re interested in the 

product of Skinny and Puffy…



Uniforms versus intervals

approach
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Bias accumulates
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Fitted distribution

• Assumes some shape for the distributions

• Uniforms approach yields a single distribution

• Intervals approach yields a probability box



Interval approach

• Creates a class of maximum likelihood solutions

• Every one solves a ML problem for a set of 

scalar values within the respective intervals

• Example:  let’s fit exponential distributions
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Results from intervals approach
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.

.

  xxF  exp1);(

Maximum likelihood for censored data

.

= F(x; )  F(x; )

L(x) = Pr(x  X  x)

= Pr(x  X)  Pr(x  X)
.

where, for an exponential distribution, 

Given a datum x = [x, x],

and 1/ is the mean



Single datum

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

L
ik

el
ih

o
o

d



0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

L() = exp() exp(2)

/ ln 0.69


x  [1,2]



Maximum likelihood for multiple data
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Results from uniforms approach
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Negligible difference
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Are these answers reasonable?

• Picking a single exponential to fit interval data

• Essentially no difference between Skinny and 
Puffy data sets, despite disparity of uncertainties

• Confidence bands actually smaller for Puffy, 
even though its uncertainty is much larger

• No guarantee that the answer approaches the true 
distribution even if asymptotically many data are 
collected



Descriptive statistics

• Practical algorithms for all common statistics

– Mean, variance, skewness, etc., but not mode

– Empirical and fitted distributions

– Confidence limits, outlier statistics, etc.

• Some are simple to compute

• Many are NP-hard to compute, e.g., variance

• Feasible algorithms exist for many special cases

– Variance can be computed in linear time with n

– In practice, interval data is computationally easy
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Smallest 

mean
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X
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mean

Central tendency

Skinny Puffy

Mean  [5.338, 5.849] [4.56, 7.39]

Geometric mean [4.186, 4.866] [3.28, 7.09] 

Median [5.59, 6.125] [4.5, 7.9]
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variance
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Dispersion
Skinny Puffy

Variance [7.91, 10.77] [0.91, 10.98] 

Sample variance [9.50, 12.92] [1.03, 12.35]

Standard deviation [2.81,   3.29] [0.95,   3.32]

Interquartile range [2.68,   8.35] [3.50,   8.80]



Take-home messages

• Intervals generalise real-valued measurements

• Handle ± measurement precision, data censoring 
and missingness as special cases

• We can mix good and bad data in a consistent way

• Interval approach yields more robust results than 
methods that depend on subtle assumptions such 
as missing at random, or the ‘uniforms’ model 



Model uncertainty



Model uncertainty

• Doubt about the structural form of the model

• Usually incertitude rather than variability

• Usually considerable in ecosystems models

• Often the elephant in the middle of the room

Parameters

Distribution shape

Intervariable dependence

Arithmetic equation

Level of abstraction

model 

uncertainty



Uncertainty in probabilistic analyses

• Parameters

• Data surrogacy

• Distribution shape

• Intervariable dependence

• Arithmetic expression

• Level of abstraction

model 
uncertainty

already 



Monte Carlo strategy

• Introduce a new discrete variable

• Let the value of the variable dictate which 
model will be used in each rep

• Wiggle the value from rep to rep

• Only works for short, explicit list of models 
(you have to list the models)

• Many theorists object to this strategy



Model uncertainty as a mixture

If u>0.5 then model=I else model=II

I

II

1

0

I or II

C
D

F
P

D
F



General strategies

• Sensitivity (what-if) studies

• Probabilistic mixture

• Bayesian model averaging

• Enveloping and bounding analyses



Sensitivity (what-if) studies

• Simply re-compute the analysis with 

alternative assumptions

– Intergovernmental Panel on Climate Change

• No theory required to use or understand



Drawbacks of what-if

• Consider a long-term model of the economy 
under global warming stress

3 baseline weather trends
3 emission scenarios 
3 population models
3 mitigation plans

• Combinatorially complex as more model 
components are considered

• Cumbersome to summarize results

81 analyses to compute, 

and to document



Probabilistic mixture

• Identify all possible models

• Introduce a new discrete random variable whose 

value says which model to use; let it vary in MC

• This averages probability distributions

• Use weights to account for different credibility       

(or assume equiprobability)



Drawbacks of mixture

• If you cannot enumerate the possible models, 

you can’t use this approach

• Averages together incompatible theories and 

yields an answer that neither theory supports

• Can underestimate tail risks 



Bayesian model averaging

• Similar to the probabilistic mixture

• Updates prior probabilities to get weights

• Takes account of available data 



Drawbacks of Bayesian averaging

• Requires priors and can be computationally 
challenging

• Must be able to enumerate the possible models

• Averages together incompatible theories and 
yields an answer that neither theory supports

• Can underestimate tail risks 



Bounding probabilities

• Translate model uncertainties to a choice 

among distributions

• Envelope the cumulative distributions

• Treat resulting p-box as single object



Drawbacks of bounding

• Cannot account for different model credibilities

• Can’t make use of data

• Doesn’t account for ‘holes’



Numerical example

The function  f is one of two possibilities.  Either

f(A,B) = fPlus(A,B) = A + B

or

f(A,B) = fTimes(A,B)  = A  B

is the correct model, but the analyst does not know 
which.  Suppose that 

A ~ triangular(2.6, 0, 2.6) 

B ~ triangular(2.4, 5, 7.6).

fPlus is twice as likely as fTimes; datum: f(A,B) = 7.59



0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

C
u

m
u

la
ti

v
e 

p
ro

b
ab

il
it

y

X

P



0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

Bayes

What-if   

Mixture

C
u

m
u

la
ti

v
e 

p
ro

b
ab

il
it

y

X

Envelope

P



When you can enumerate the models

• What-if analysis isn’t feasible in big problems

• Probabilistic mixture is, at best, ad hoc

• For abundant data, Bayesian approach is best

• Otherwise, it’s probably just wishful thinking

• Bounding is reliable, but may be too wide



When you can’t list the models

• If you cannot enumerate all the models, 
bounding is often the only tenable strategy

• Shape of input distributions

• Dependence

• Functional form 

– Laminar versus turbulent flow

– Linear or nonlinear low-dose extrapolation

– Ricker versus Beverton-Holt density dependence



Synopsis of the four approaches

• What-if

– Straightforward, doesn’t conflate uncertainties

– Must enumerate, combinatorial

• Probabilistic mixture, Bayesian model averaging

– Single distribution, accounts for data (and priors)

– Must enumerate, averages incompatible theories

– Can underestimate tail risks

• Bounding

– Yields one object; doesn’t conflate or understate risk

– Cannot account for data or differential credibility



Conclusions



Probability theory isn’t good enough

• Probability theory, as its commonly used, 
doesn’t cumulate gross uncertainty correctly 

• Precision of the answer (measured as cv) 
depends strongly on the number inputs and 
not so strongly on their distribution shapes, 
even if they are uniforms or flat priors  

• The more inputs, the tighter the answer
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surety come from?

What justifies it?
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A lot of grossly uncertain inputs...



Smoke and mirrors certainty

• Conventional probability theory, at least as 
it’s naively applied, seems to manufacture 
certainty out of nothing

• This is why some critics say probabilistic 
analyses are “smoke and mirrors”

• P-boxes give a vacuous answer if all you 
give them are vacuous inputs



The problem is wishful thinking

In practice, probabilists often use conventions 
and make assumptions that may be convenient 
but are not really justified:

1. Variables are independent of one another

2. Uniform distributions capture incertitude

3. Distributions are stationary (unchanging) 

4. Specifications are perfectly precise



Untenable assumptions

• Distributions normal

• Uncertainties are small

• Sources of variation are independent

• Uncertainties can cancel each other out

• Linearized models good enough

• Most of the physics is known and modeled



Need ways to relax assumptions

• Possibly large, non-normal uncertainties

• Non-independent, or unknown dependencies

• Uncertainties that may not cancel

• Arbitrary mathematical operations

• Model uncertainty



Everyone makes assumptions

• But not all sets of assumptions are equal!

Point value Linear function

Interval range Monotonic function

Entire real line Any function

Normal distribution Independence

Unimodal distribution Known correlation

Any distribution Any dependence

• Like to discharge unwarranted assumptions

“Certainties lead to doubt; doubts lead to certainty”



Take-home messages

• Monte Carlo will always be useful, like Euclidean geometry

• Using bounding, you don’t have to pretend you know 
a lot to get quantitative answers 

• Approximation and bounding are often complementary

• Paying attention to measurement imprecision, 
censoring, and missingness requires new approaches

• Integrating them with small- and no-data problems, 
with model uncertainty, yields a non-Laplacian theory

• Humans treat incertitude and variability differently and 



What is known 

empirically
Monte Carlo analysis

Probability bounds 

analysis

Know only range 

of variable

Assume uniform 

distribution
Assume interval

Know some 

constraints about 

random variable

Select largest entropy 

distribution from all thus 

constrained distributions

Form envelope around 

class of distributions 

matching constraints

Uncertainty about 

distribution 

family or shape

Repeat analysis for other 

plausible distribution 

shapes

Form distribution-free p-

box as envelope of all 

plausible distributions

Sample data
Form empirical distribution 

function (EDF)

Form nonparametric c-box 

or KS confidence limits 

around EDF

Variable follows 

known marginal 

distribution

Sample from particular 

distribution
Use particular distribution

Measurement 

uncertainty

Ignore it (usually), or 

perform sensitivity analysis

Express it in intervals and 

incorporate it into analysis



What is known 

empirically
Monte Carlo analysis

Probability bounds 

analysis

Non-detects
Replace non-detect with 

½DL (detection limit)

Replace non-detect with 

interval [0, DL]

Know variables 

are independent
Assume independence

Assume (random-set) 

independence

Know magnitude 

of correlation

Simulate correlation from 

particular (but usually 

arbitrary) copula

Bound result from possible 

copulas with correlation, or 

use known copula

Know only the 

general sign (+ or 

) of dependence

Assume some correlation 

of appropriate sign, or 

repeat analysis for different 

correlations

Bound result assuming 

only the sign of the 

dependence and specific or 

all possible copulas

Do not know the 

nature of the 

dependence

Assume independence 

(usually), or repeat analysis 

for different correlations

Bound result for all 

possible dependencies 

(Fréchet case)

Model 

uncertainty

Form stochastic mixture 

(vertical average) of 

distribution functions

Form envelope of 

distribution functions



Cheat sheet for the pba.r library
normal, etc.

histogram

quantiles

pointlist

MM<tab><tab>

ME<tab><tab>

ML<tab><tab>

CB<tab><tab>

NV<tab><tab>

Supported named distributions
bernoulli, beta, binomial, cauchy, chi, chisquared, delta, dirac, discreteuniform, exponential, 

exponentialpower, extremevalue, f, fishersnedecor, fishertippett, fisk, frechet, gamma, gaussian, 

geometric, generalizedextremevalue, generalizedpareto, gumbel, histogram, inversegamma, 

laplace, logistic, loglogistic, lognormal, logtriangular, loguniform, negativebinomial, normal, 

pareto, pascal, powerfunction, poisson, quantiles, rayleigh, reciprocal, shiftedloglogistic, 

skewnormal, student, trapezoidal, triangular, uniform, Weibull

• plot, lines, show, summary

• mean, sd, var, median, quantile, left, right, 

prob, cut, percentile, iqr, random, range

• exp, log, sqrt, abs, round, trunc, ceiling, 

floor, sign, sin, cos, tan, asin, acos, atan, 

atan2, reciprocate, negate, +, -, *, /, pmin, 

pmax, ^, and, or, not, mixture, smin, smax

Nonparametric p-boxes
maxmean, minmax, minmaxmean, minmean, meanstd, meanvar, minmaxmode, minmaxmedian, minmaxmedianismode, 
minmaxpercentile, minmaxmeanismedian, minmaxmeanismode, mmms, mmmv, posmeanstd, symmeanstd, uniminmax, 
unimmmv, unimmms



Synopsis: probability bounds analysis

How?

– specify what you are sure about

– establish bounds on probability distributions

– pick dependencies (no assumption, indep., perfect, etc.)

Why?

– account for uncertainty better than maximum entropy, etc.

– puts bounds on Monte Carlo results

– bounds get narrower with better empirical information

Why not?

– does not yield second-order probabilities

– best-possible results can sometimes be expensive to compute



Synopsis: imprecise probabilities

How?                                     _
– avoid sure loss, P(A)  P(A)
– be coherent,  P(A) + P(B)  P(A  B)
– use natural extension (mathematical programming) to find 

consequences

Why?
– most expressive language for uncertainty of all kinds
– can provide expectations and conditional probabilities
– provides best possible results that do not lose information

Why not?
– requires mathematical programming
– can strain mathematical ability of the analyst



Software for probability bounds

• R libraries pbox.r and pba.r

• Add-in for Excel (NASA, beta version)

• RAMAS Risk Calc 4.0 (NIH, commercial)

• StatTool (Dan Berleant, freeware)

• PBDemo (NIH, freeware)

• Constructor (Sandia and NIH, freeware)

• Williamson and Downs (1990)



Web presentations and documents
Introduction to probability bounds analysis written for Monte Carlo users

http://www.ramas.com/pbawhite.pdf 

Introduction of probability bounds analysis to interval researchers

http://www2.imm.dtu.dk/~km/int-05/Slides/ferson.ppt 

Gert de Cooman’s gentle introduction to imprecise probabilities

http://maths.dur.ac.uk/~dma31jm/durham-intro.pdf

Fabio’s Cozman’s introduction to imprecise probabilities

http://www.cs.cmu.edu/~qbayes/Tutorial/quasi-bayesian.html

Notes from a week-long summer school on imprecise probabilities

http://idsia.ch/~zaffalon/events/school2004/school.htm

Introduction to p-boxes and related structures

http://www.sandia.gov/epistemic/Reports/SAND2002-4015.pdf

Handling dependencies in uncertainty modeling

http://www.ramas.com/depend.zip 

Introduction to Bayesian and robust Bayesian methods in risk analysis

http://www.ramas.com/bayes.pdf 

Statistics for data that may contain interval uncertainty

http://www.ramas.com/intstats.pdf



Topical websites

• Intervals and Probability Distributions

http://class.ee.iastate.edu/berleant/home/ServeInfo/Interval/intprob.html

• Imprecise Probabilities Project

http://ippserv.rug.ac.be/home/ipp.html 

• Sandia National Laboratory’s Epistemic Uncertainty Project

http://www.sandia.gov/epistemic/

• R software for confidence boxes 

https://sites.google.com/site/confidenceboxes/

• Applied Biomathematics’ Risk Calc website 

http://www.ramas.com/riskcalc.htm

• Society for Imprecise Probabilities Theory and Applications 

http://www.sipta.org/
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